References

  1. Auer RN, Sutherland GR. Hypoxia and related conditions. In: Graham DI, Lantos PL, eds. Greenfield's Neuropathology. Vol. 1. 7th ed. Arnold: London, 2002:233-280.
  2. Saito N, Kawai K, Nowak TS Jr. Reexpression of developmentally regulated MAP2c mRNA after ischemia: colocalization with hsp72 mRNA in vulnerable neurons. J Cereb Blood Flow Metab 1995; 15:205-215.
  3. Petito C, Feldmann E, Pulsinelli W, et al. Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology 1987; 37:1281-1286.
  4. Ito U, Spatz M, Walker JT Jr., et al. Experimental cerebral ischemia in Mongolian gerbils. I. Light microscopic observations. Acta Neuropathol (Berl) 1975; 32:209-223.
  5. Pulsinelli WA, Brierley JB, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 1982; 11:491-498.
  6. Kirino T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 1982; 239:57-69.
  7. Smith M-L, Auer RN, Siesjo BK. The density and distribution of ischemic brain injury in the rat following 2-10 min of forebrain ischemia. Acta Neuropathol (Berl) 1984; 64:319-332.
  8. Crain BJ, Westerkam WD, Harrison AH, et al. Selective neuronal death after transient forebrain ischemia in the Mongolian gerbil: a silver impregnation study. Neuroscience 1988; 27:387-402.
  9. Hatakeyama T, Matsumoto M, Brengman JM, et al. Immunohistochemical investigation of ischemic and postischemic damage after bilateral carotid occlusion in gerbils. Stroke 1988; 19:1526-1534.
  10. Iwai T, Hara A, Niwa M, et al. Temporal profile of nuclear DNA fragmentation in situ in gerbil hippocampus following transient forebrain ischemia. Brain Res 1995; 671:305-308.
  11. Yoshimi K, Takeda M, Nishimura T, et al. An immunohistochemical study of MAP2 and clathrin in gerbil hippocampus after cerebral ischemia. Brain Res 1991; 560:149-158.
  12. Iwai T , Niwa M , Hara A, et al. DNA fragmentation in the CA2 sector of gerbil hippocampus following transient forebrain ischemia. Brain Res 2000; 857:275-278.
  13. Johansen FF, Zimmer J, Diemer NH. Early loss of somatostatin neurons in dentate hilus after cerebral ischemia in the rat precedes CA1 pyramidal loss. Acta Neuropathol (Berl) 1987; 73:110-114.
  14. Matsuyama T, Tsuchiyama M, Nakamura H, et al. Hilar somatostatin neurons are more vulnerable to an ischemic insult than CA1 pyramidal neurons. J Cereb Blood Flow Metab 1993; 13:229-234.
  15. Sugimoto A, Shozuhara H, Kogure K, et al. Exposure to sub-lethal ischemia failed to prevent subsequent ischemic death of dentate hilar neurons, as estimated by laminin immunohistochemistry. Brain Res 1993; 629:159-162.
  16. Nishino K, Nowak TS Jr. Time course and cellular distribution of hsp27 and hsp72 stress protein expression in a quantitative gerbil model of ischemic injury and tolerance: thresholds for hsp72 induction and hilar lesioning in the context of ischemic preconditioning. J Cereb Blood Flow Metab 2004; 24:167-178.
  17. Blomqvist P, Wieloch T. Ischemic brain damage in rats following cardiac arrest using a long-term recovery model. J Cereb Blood Flow Metab 1985; 5:420-431.
  18. Ross DT, Graham DI. Selective loss and selective sparing of neurons in the thalamic reticular nucleus following human cardiac arrest. J Cereb Blood Flow Metab 1993; 13:558-567.
  19. Ross DT, Duhaime AC. Degeneration of neurons in the thalamic reticular nucleus following transient ischemia due to raised intracranial pressure: excitotoxic degeneration mediated via non-NMDA receptors? Brain Res 1989; 501:129-143.
  20. Kawai K, Nitecka L, Ruetzler CA, et al. Global cerebral ischemia associated with cardiac arrest in the rat: I. Dynamics of early neuronal changes. J Cereb Blood Flow Metab 1992; 12:238-249.
  21. Kawai K, Nowak TS Jr., Klatzo I. Loss of parvalbumin immunoreactivity defines selectively vulnerable thalamic reticular nucleus neurons following cardiac arrest in the rat. Acta Neuropathol 1995; 89:262-269.
  22. Kawai K , Nakayama H , Tamura A . Limited but significant protective effect of hypothermia on ultra-early-type ischemic neuronal injury in the thalamus. J Cereb Blood Flow Metab 1997; 17:543-552.
  23. Kobayashi S, Harris VA, Welsh FA. Spreading depression induces tolerance of cortical neurons to ischemia in rat brain. J Cereb Blood Flow Metab 1995; 15:721-727.
  24. Chesselet M-F , Gonzales C , Lin C-S , et al. Ischemic damage in the striatum of adult gerbils: relative sparing of somatostatinergic and cholinergic interneurons contrasts with loss of efferent neurons. Exp Neurol 1990; 110:209-218.
  25. Meade CA , Figueredo-Cardenas G , Fusco F , et al. Transient global ischemia in rats yields striatal projection neuron and interneuron loss resembling that in Huntington's disease . Exp Neurol 2000; 166:307-323.
  26. Korematsu K, Goto S, Nagahiro S, et al. Changes of immunoreactivity for synaptophysin ('protein p38') following a transient cerebral ischemia in the rat striatum. Brain Res 1993; 616:320-324.
  27. Katchanov J, Waeber C, Gertz K, et al. Selective neuronal vulnerability following mild focal brain ischemia in the mouse. Brain Pathol 2003; 13:452-464.
  28. Volpe BT , Blau AD , Wessel TC , et al. Delayed histopathological neuronal damage in the substantia nigra compacta (nucleus A9) after transient forebrain ischemia. Neurobiol Dis 1995; 2:119-127.
  29. Diemer NH , Siemkovicz E . Regional neurone damage after cerebral ischemia in the normo- and hypoglycemic rat. Neuropathol Appl Neurobiol 1981; 7:217-227.
  30. Hata R , Matsumoto M , Hatakeyama T , et al. Differential vulnerability in the hindbrain neurons and local cerebral blood flow during bilateral vertebral occlusion in gerbils . Neuroscience 1993; 56:423-439.
  31. Hata R , Matsumoto M , Kitagawa K , et al. A new gerbil model of hindbrain ischemia by extracranial occlusion of the bilateral verterbral arteries. J Neurol Sci 1994; 121:79-89.
  32. Kinney HC , Duncan Armstrong D . Perinatal neuropathology. In: Graham DI , Lantos PL , eds. Greenfield's Neuropathology. Vol. 1. 7th ed. Arnold: London, 2002:519-606.
  33. Back SA , Han BH , Luo NL , et al. Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J Neurosci 2002; 22:455-463.
  34. Petito CK, Torres-Munoz J , Roberts B , et al. DNA fragmentation follows delayed neuronal death in CA1 neurons exposed to transient global ischemia. J Cereb Blood Flow Metab 1997; 17:967-976.
  35. Petito CK, Olarte J-P, Roberts B, et al. Selective glial vulnerability following transient global ischemia in rat brain. J Neuropathol Exp Neurol 1998; 57:231-238.
  36. Schmidt-Kastner R , Fliss H , Hakim AM . Subtle neuronal death in striatum after short forebrain ischemia in rats detected by in situ end-labeling for DNA damage. Stroke 1997; 28:163-170.
  37. Pulsinelli WA, Waldman S, Rawlinson D, et al. Moderate hyperglycemia augments ischemic brain damage: a neuropathological study in the rat. Neurology 1982; 32:1239-1246.
  38. Rehncrona S, Rosen I, Siesjö BK. Brain lactic acidosis and ischemic brain damage: 1. Biochemistry and neurophysiology. J Cereb Blood Flow Metab 1981; 1:297-311.
  39. Ames A III, Wright RL, Kowada M, et al. Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol 1968; 52:437-453.
  40. Kägström E, Smith M-L, Siesjö BK. Local cerebral blood flow in the recovery period following complete cerebral ischemia in the rat. J Cereb Blood Flow Metab 1983; 3:170-182.
  41. Dietrich WD, Busto R, Yoshida S, et al. Histopathological and hemodynamic consequences of complete versus incomplete ischemia in the rat. J Cereb Blood Flow Metab 1987; 7:300-308.
  42. Ito U, Ohno K, Yamaguchi T, et al. Transient appearance of "no-reflow" phenomenon in Mongolian gerbils. Stroke 1980; 11:517-521.
  43. Bottiger BW, Krumnikl JJ, Gass P, et al. The cerebral 'no-reflow' phenomenon after cardiac arrest in rats—influence of low-flow reperfusion. Resuscitation 1997; 34:79-87.
  44. Levine S, Sohn D. Cerebral ischemia in infant and adult gerbils. Relation to incomplete circle of Willis. Arch Pathol 1969; 87:315-317.
  45. Kahn K. The natural course of experimental cerebral infarction in the gerbil. Neurology 1972; 22:510-515.
  46. Harrison MJG, Brownbill D, Lewis PD, et al. Cerebral edema following carotid artery ligation in the gerbil. Arch Neurol 1973; 28:389-391.
  47. Berry K, Wisniewski HM, Svarzbein L, et al. On the relationship of brain vasculature to production of neurological deficit and morphological changes following acute unilateral common carotid artery ligation in gerbils. J Neurol Sci 1975; 25:75-92.
  48. Levine S, Payan H . Effects of ischemia and other procedures on the brain and retina of the gerbil (Meriones unguiculatus). Exp Neurol 1966; 16:255-262.
  49. Donadio MF, Kozlowski PB, Kaplan H, et al. Brain vasculature and induced ischemia in seizure-prone and non-seizure-prone gerbils. Brain Res 1982; 234:263-273.
  50. Matsumoto M , Hatakeyama T , Akai F , et al. Prediction of stroke before and after unilateral occlusion of the common carotid artery in the gerbil. Stroke 1988; 19:490-497.
  51. Kitagawa K, Matsumoto M, Handa N, et al. Prediction of stroke-prone gerbils and their cerebral circulation. Brain Res 1989; 479:263-269.
  52. Levy DE , Brierley JB . Communications between vertebro-basilar and carotid arterial circulations in the gerbil. Exp Neurol 1974; 45:503-508.
  53. Crockard A , Iannotti F , Hunstock AT , et al. Cerebral blood flow and edema following carotid occlusion in the gerbil. Stroke 1980; 11:494-498.
  54. Tomida S, Wagner HG, Klatzo I,etal. Effect of acute electrode placement on regional CBF in the gerbil: a comparison of blood flow measured by hydrogen clearance, [3H]nicotine, and [14C]iodoantipyrine techniques. J Cereb Blood Flow Metab 1989; 9:79-86.
  55. Kuroiwa T, Bonnekoh P, Hossmann K-A. Prevention of postischemic hyperthermia prevents ischemic injury of CA1 neurons in gerbils. J Cereb Blood Flow Metab 1990; 10:550-556.
  56. Welsh FA, Harris VA. Postischemic hypothermia fails to reduce ischemic injury in gerbil hippocampus. J Cereb Blood Flow Metab 1991; 11:617-620.
  57. Colbourne F , Nurse SM , Corbett D . Spontaneous postischemic hyperthermia is not required for severe CA1 ischemic damage in gerbils. Brain Res 1993; 623:1-5.
  58. Suga S , Nowak TS Jr . Postischemic hyperthermia increases expression of hsp72 mRNA after brief ischemia in the gerbil. Neurosci Lett 1998; 243:57-60.
  59. Mitani A, Andou Y, Masuda S, et al. Transient forebrain ischemia of three-minute duration consistently induces severe neuronal damage in field CA1 of the hippocampus in the normothermic gerbil. Neurosci Lett 1991; 131:171-174.
  60. Abe H , Nowak TS Jr . Induced hippocampal neuroprotection in an optimized gerbil ischemia model: Insult thresholds for tolerance induction and altered gene expression defined by ischemic depolarization. J Cereb Blood Flow Metab 2004; 24:84-97.
  61. Brown AW, Levy DE, KublikM, et al. Selective chromatolysis of neurons in the gerbil brain: a possible consequence of "epileptic" activity produced by common carotid artery occlusion. Ann Neurol 1979; 5:127-138.
  62. Cohn R. Convulsive activity in gerbils subjected to cerebral ischemia. Exp Neurol 1979; 65:391-397.
  63. Pulsinelli WA , Brierley JB . A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 1979; 10:267-272.
  64. Pulsinelli WA, Duffy TE. Regional energy balance in rat brain after transient forebrain ischemia. J Neurochem 1983; 40:1500-1503.
  65. Pulsinelli WA , Buchan AM . The four-vessel occlusion rat model: method for complete occlusion of vertebral arteries and control of collateral circulation. Stroke 1988; 19:913-914.
  66. Schmidt-Kastner R , Paschen W , Grosse Ophoff B , et al. A modified four-vessel occlusion model for inducing incomplete forebrain ischemia in rats. Stroke 1989; 20:938-946.
  67. Furlow TW Jr. Cerebral ischemia produced by four-vessel occlusion in the rat: a quantitative evaluation of cerebral blood flow. Stroke 1982; 13:852-855.
  68. Blomqvist P, Mabe H, Ingvar M, et al. Models for studying long-term recovery following forebrain ischemia in the rat . 1. Circulatory and functional effects of 4-vessel occlusion. Acta Neurol Scand 1984; 69:376-384.
  69. Todd NV , Picozzi P , Crockard HA , et al. Recirculation after cerebral ischemia. Simultaneous measurement of cerebral bloodflow, brain edema, cerebrovascular permeability and cortical EEG in the rat. Acta Neurol Scand 1986; 74:269-278.
  70. Sugio K, Horigome N, Sakaguchi T, et al. A model of bilateral hemispheric ischemia—modified four-vessel occlusion in rats. Stroke 1988; 19:922.
  71. Kameyama M, Suzuki J, Shirane R, et al. A new model of bilateral hemispheric ischemia in the rat—three vessel occlusion model. Stroke 1985; 16:489-493.
  72. Pulsinelli WA, Levy DE, Duffy TE. Cerebral blood flow in the four-vessel occlusion rat model [Letter]. Stroke 1983; 14:832-833.
  73. Furlow TW Jr. Cerebral blood flow in the four-vessel occlusion rat model [Letter]. Stroke 1983; 14:833-834.
  74. Busto R, Dietrich WD, Globus MY-T, et al. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 1987; 7:729-738.
  75. Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 2002; 110:429-441.
  76. Alps BJ, Hass WK. The potential beneficial effect of nicardipine in a rat model of transient forebrain ischemia. Neurology 1987; 37:809-814.
  77. Shirane R, Shimizu H, Kameyama M, et al. A new method for producing temporary complete cerebral ischemia in rats. J Cereb Blood Flow Metab 1991; 11:949-956.
  78. Xu ZC, Pulsinelli WA. Responses of CA1 pyramidal neurons in rat hippocampus to transient fore-brain ischemia: an in vivo intracellular recording study. Neurosci Lett 1994; 171:187-191.
  79. Halaby IA, Takeda Y, Yufu K, et al. Depolarization thresholds for hippocampal damage, ischemic preconditioning, and changes in gene expression after global ischemia in the rat. Neurosci Lett 2004; 372 : 12 - 16 .
  80. Ueda M, Nowak TS Jr. Protective preconditioning by transient global ischemia in the rat. Components of delayed injury progression and lasting protection distinguished by comparisons of depolarization thresholds for cell loss at long survival times. J Cereb Blood Flow Metab 2005; 25:949-958.
  81. Eklöf B, Siesjö BK. The effect of bilateral carotid artery ligation upon the blood flow and energy state of the rat brain. Acta Physiol Scand 1972; 86:155-165.
  82. Smith M-L, Bendek G, Dahlgren N, et al. Models for studying long-term recovery following forebrain ischemia in the rat. 2. A 2-vessel occlusion model. Acta Neurol Scand 1984; 69:385-401.
  83. Gionet TX, Warner DS, Verhaegen M, et al. Effects of intra-ischemic blood pressure on outcome from 2-vessel occlusion forebrain ischemia in the rat. Brain Res 1992; 586:188-194.
  84. Sugawara T, Kawase M, Lewen A, et al. Effect of hypotension severity on hippocampal CA1 neurons in a rat global ischemia model. Brain Res 2000; 877:281-287.
  85. Yoshida S, Busto R, Martinez E,etal. Regional brain energy metabolism after complete versus incomplete ischemia in the rat in the absence of severe lactic acidosis. J Cereb Blood Flow Metab 1985; 5:490-501.
  86. McBean DE, Winters V, Wilson AD, et al. Neuroprotective efficacy of lifarizine (RS-87476) in a simplified rat survival model of 2-vessel occlusion. Br J Pharmacol 1995; 116:3093-3098.
  87. Bendel O, Alkass K, Bueters T, et al. Reproducible loss of CA1 neurons following carotid artery occlusion combined with halothane-induced hypotension. Brain Res 2005; 1033:135-142.
  88. Brunner EA, Passonneau JV, Molstad C. The effect of volatile anaesthetics on level of metabolites and on metabolic rate in brain. J Neurochem 1971; 18:2301-2316.
  89. Harp JR , Nilsson L , Siesjö BK . The effect of halothane anesthesia upon cerebral oxygen consumption in the rat. Acta Anesthesiol Scand 1976; 20:83-90.
  90. Keykhah MM, Welsh FA, Harp JR. Cerebral energy levels during trimethaphan-induced hypotension in the rat: effects of light versus deep halothane anesthesia. Anesthesiology 1979; 50:36-39.
  91. Dirnagl U, Thoren P, Villringer A, et al. Global forebrain ischemia in the rat: controlled reduction of cerebral blood flow by hypobaric hypotension and two-vessel occlusion. Neurol Res 1993; 15:128-130.
  92. Minamisawa H, Nordström C-H, Smith M-L, et al. The influence of mild body and brain hypothermia on ischemic brain damage. J Cereb Blood Flow Metab 1990; 10:365-374.
  93. Coimbra C, Drake M, Boris-Möller F, et al. Long-lasting neuroprotective effect of postischemic hypothermia and treatment with an anti-inflammatory/antipyretic drug. Evidence for chronic encephalopathy processes following ischemia. Stroke 1996; 27:1578-1585.
  94. Pluta R , Lossinsky AS , Mossakowski MJ , et al. Reassessment of a new model of complete cerebral ischemia in rats. Acta Neuropathol 1991; 83:1-11.
  95. Reid KH , Young C , Schurr A , et al. Audiogenic seizures following global ischemia induced by chest compression in Long-Evans rats. Epilepsy Res 1996; 23:195-209.
  96. Ginsberg MD, Busto R. Rodent models of global ischemia. Stroke 1989; 20:1627-1642.
  97. Melgar MA, Park H, Rafols JA, et al. A model of global forebrain ischemia/reperfusion in the awake rat. Neurol Res 2002; 24:97-106.
  98. Phillis JW , Perkins LM , Smith-Barbour M , et al. Transmitter amino acid release from rat neocortex: complete versus incomplete ischemia models. Neurochem Res 1994; 19:1387-1392.
  99. Kawahara N , Kawai K , Toyoda T , et al. Cardiac arrest cerebral ischemia model in mice failed to cause delayed neuronal death in the hippocampus. Neurosci Lett 2002; 322:91-94.
  100. Böttiger BW , Teschendorf P , Krumnikl JJ, et al. Global cerebral ischemia due to cardiocirculatory arrest in mice causes neuronal degeneration and early induction of transcription factors in the hippocampus. Mol Brain Res 1999; 65:135-142.
  101. Mizushima H, Zhou CJI, Dohi K, et al. Reduced postischemic apoptosis in the hippocampus of mice deficient in interleukin-1. J Comp Neurol 2002; 448:203-216.
  102. Kofler J, Hattori K, Sawada M, et al. Histopathological and behavioral characterization of a novel model of cardiac arrest and cardiopulmonary resuscitation in mice. J Neurosci Meth 2004; 136:33-44.
  103. Neigh GN, Kofler J, Meyers JL, et al. Cardiac arrest/cardiopulmonary resuscitation increases anxietylike behavior and decreases social interaction. J Cereb Blood Flow Metab 2004; 24:372-382.
  104. Barone FC, Knudsen DJ, Nelson AH, et al. Mouse strain differences in susceptibility to cerebral ischemia are related to vascular anatomy. J Cereb Blood Flow Metab 1993; 13:683-692.
  105. Yang G, Kitagawa K, Matsushita K, et al. C57BL/6 strain is most susceptible to cerebral ischemia following bilateral common carotid artery occlusion among seven mouse strains: selective neuronal death in the murine transient forebrain ischemia. Brain Res 1997; 752:209-218.
  106. Fujii M, Hara H, Meng W, et al. Strain-related differences in susceptibility to transient forebrain ischemia in SV-129 and C57Black/6 mice. Stroke 1997; 28:1805-1811.
  107. Kitagawa K, Matsumoto M, Yang G, et al. Cerebral ischemia after bilateral carotid artery occlusion and intraluminal suture occlusion in mice: evaluation of the patency of the posterior communicating artery. J Cereb Blood Flow Metab 1998; 18:570-579.
  108. Tsuchiya D, Hong SJ, Won Suh S, et al. Mild hypothermia reduces zinc translocation, neuronal cell death, and mortality after transient global ischemia in mice. J Cereb Blood Flow Metab 2002; 22:1231-1238.
  109. Terashima T, Namura S, Hoshimaru M, et al. Consistent injury in the striatum of C57BL/6 mice after transient bilateral common carotid artery occlusion. Neurosurgery 1998; 43:900-908.
  110. Olsson T, Hansson O, Nylandsted J, et al. Lack of neuroprotection by heat shock protein 70 overexpression in a mouse model of global cerebral ischemia. Exp Brain Res 2004; 154:442-449.
  111. Olsson T, Wieloch T, Smith M-L. Brain damage in a mouse model of global cerebral ischemia. Effect of NMDA receptor blockade. Brain Res 2003; 982:260-269.
  112. Murakami K, Kondo T, Kawase M, et al. The development of a new mouse model of global ischemia: focus on the relationships between ischemia duration, anesthesia, cerebral vasculature, and neuronal injury following global ischemia in mice. Brain Res 1998; 780:304-310.
  113. Sheng H, Laskowitz DT, Pearlstein RD, et al. Characterization of a recovery global cerebral ischemia model in the mouse. J Neurosci Meth 1999; 88:103-109.
  114. Wellons JC III, Sheng H, Laskowitz DT, et al. A comparison of strain-related susceptibility in two murine recovery models of global cerebral ischemia. Brain Res 2000; 868:14-21.
  115. Panahian N, Yoshida T, Huang PL, et al. Attenuated hippocampal damage after global cerebral ischemia in mice mutant in neuronal nitric oxide synthase. Neuroscience 1996; 72:343-354.
  116. Yonekura I, Kawahara N, Nakatomi H, et al. A model of global ischemia in C57 BL/6 mice. J Cereb Blood Flow Metab 2004; 24:151-158.
  117. Meng W, Ayata C, Waeber C, et al. Neuronal NOS-cGMP-dependent Ach-induced relaxation in pial arterioles of endothelial NOS knockout mice. Am J Physiol 1998; 274:H411-H415.
  118. Traystman RJ. Animal models of focal and global cerebral ischemia. ILAR J 2003; 44:85-95.
  119. Pulsinelli WA, Levy DE, Duffy TE. Regional cerebral blood flow and glucose metabolism following transient forebrain ischemia. Ann Neurol 1982; 11:499-509.
  120. Kägström E, Smith M-L, Siesjö BK. Recirculation in the rat brain following incomplete ischemia. J Cereb Blood Flow Metab 1983; 3:183-192.
  121. Fleidervish I A, Gebhardt C, Astman N, et al. Enhanced spontaneous transmitter release is the earliest consequence of neocortical hypoxia that can explain the disruption of normal circuit function, J Neurosci 2001; 21:4600-4608.
  122. Raffin CN, Harrison MA, Sick TJ, et al. EEG suppression and anoxic depolarization: Influences on cerebral oxygenation during ischemia. J Cereb Blood Flow Metab 1991; 11:407-415.
  123. Ekholm A, Katsura K, Siesjö BK. Coupling of energy failure and dissipative K+ flux during ischemia: role of preischemic plasma and glucose concentration. J Cereb Blood Flow Metab 1993; 13:193-200.
  124. Xu ZC, Pulsinelli WA. Electrophysiological changes of CA1 pyramidal neurons following transient forebrain ischemia: an in vivo intracellular recording and staining study. J Neurophysiol 1996; 76:1689-1697.
  125. Abe H, Nowak TS Jr. Gene expression and induced ischemic tolerance following brief insults. Acta Neurobiol Exp 1996; 56:3-8.
  126. Bart RD, Takaoka S, Pearlstein RD, et al. Interactions between hypothermia and the latency to ischemic depolarization: implications for neuroprotection. Anesthesiology 1998; 88:1266-1273.
  127. Sorimachi T, Abe H, Takeuchi S, et al. Neuronal damage in gerbils caused by intermittent forebrain ischemia. J Neurosurg 1999; 91:835-842.
  128. Sorimachi T, Abe H, Takeuchi S, et al. Ischemic depolarization monitoring: evaluation of protein synthesis in the hippocampal CA1 after brief unilateral ischemia in a gerbil model. J Neurosurg 2002 ; 97:104-111.
  129. Sorimachi T , Nowak TS Jr . Pharmacological manipulations of ATP-dependent potassium channels and adenosine A1 receptors do not impact hippocampal ischemic preconditioning in vivo: evidence in a highly quantitative gerbil model. J Cereb Blood Flow Metab 2004; 24:556-563.
  130. Xu ZC. Neurophysiological changes of spiny neurons in rat neostriatum after transient forebrain ischemia: an in vivo intracellular recording and staining study. Neuroscience 1995; 67:823-836.
  131. Kaminogo M, Suyama K, Ichikura A, et al. Anoxic depolarization determines ischemic brain injury. Neurol Res 1998; 20:343-348.
  132. Li J, Takeda Y, Hirakawa M. Threshold of ischemic depolarization for neuronal injury following four-vessel occlusion in the rat cortex. J Neurosurg Anesthesiol 2000; 12:247-254.
  133. Belluardo N, Mudo G, Dell'Albani P, et al. NMDA receptor-dependent and -independent immediate early gene expression induced by focal mechanical brain injury. Neurochem Int 1995; 26:443-453.
  134. Katsura K, Minamisawa H, Ekholm A, et al. Changes of labile metabolites during anoxia in moderately hypothermic and hyperthermic rats: correlation to membrane fluxes of K+. Brain Res 1992; 590:6-12.
  135. Li P-A, Kristian T, Shamloo M, et al. Effects of preischemic hyperglycemia on brain damage incurred by rats subjected to 2.5 or 5 minutes of forebrain ischemia. Stroke 1996; 27:1592-1602.
  136. Colbourne F, Sutherland G, Corbett D. Postischemic hypothermia. A critical appraisal with implications for clinical treatment. Mol Neurobiol 1997; 14:171-201.
  137. DeBow SB, Clark DL, MacLellan CL, et al. Incomplete assessment of experimental cytoprotectants in rodent ischemia studies. Can J Neurol Sci 2003; 30:368-374.
  138. Clifton GL, Taft WC, Blair RE, et al. Conditions for pharmacological evaluation in the gerbil model of forebrain ischemia. Stroke 1989; 20:1545-1552.
  139. Welsh FA, Sims RE, Harris VA. Mild hypothermia prevents ischemic injury in gerbil hippocampus. J Cereb Blood Flow Metab 1990; 10:557-563.
  140. Mitani A , Kataoka K . Critical levels of extracellular glutamate mediating gerbil hippocampal delayed neuronal death during hypothermia: brain microdialysis study. Neuroscience 1991; 42:661-670.
  141. Freund TF, Buzsaki G, Leon A, et al. Hippocampal cell death following ischemia: effects of brain temperature and anesthesia. Exp Neurol 1990; 108:251-260.
  142. Miyazawa T , Bonnekoh P , Widmann R , et al. Heating of the brain to maintain normothermia during ischemia aggravates brain injury in the rat. Acta Neuropathol 1993; 85:488-494.
  143. Miyazawa T, Hossmann K-A. Methodological requirements for accurate measurements of brain and body temperature during global forebrain ischemia of rat. J Cereb Blood Flow Metab 1992; 12:817-822.
  144. Minamisawa H, Mellergärd P, Smith M-L, et al. Preservation of brain temperature during ischemia in rats. Stroke 1990; 21:758-764.
  145. Colbourne F, Nurse SM, Corbett D. Temperature changes associated with forebrain ischemia in the gerbil. Brain Res 1993; 602:264-257.
  146. Seif el Nasr M, Nuglisch J, Krieglstein J. Prevention of ischemia-induced cerebral hypothermia by controlling the environmental temperature. J Pharmacol Toxicol Meth 1992; 27:23-26.
  147. Neill KH, Crain BJ, Nadler JV. A simple, inexpensive method of monitoring brain temperature in conscious rodents. J Neurosci Meth 1990; 33:179-183.
  148. Nakane M, Kubota M, Nakagomi T, et al. Rewarming eliminates the protective effect of cooling against delayed neuronal death. Neuroreport 2001; 12:2439-2442.
  149. Iwai T, Niwa M, Yamada H, et al. Hypothermic prevention of the hippocampal damage following ischemia in Mongolian gerbils. Comparison between intraischemic and brief postischemic hypothermia. Life Sci 1993; 52:1031-1038.
  150. Colbourne F, Corbett D. Delayed and prolonged postischemic hypothermia is neuroprotective in the gerbil. Brain Res 1994; 654:265-272.
  151. Colbourne F, Corbett D. Delayed postischemic hypothermia: a six month survival study using behavioral and histological assessments of neuroprotection. J Neurosci 1995; 15: 7250-7260.
  152. Buchan A, Pulsinelli WA. Hypothermia but not the N-methyl-D-aspartate antagonist MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia . J Neurosci 1990; 10 : 311 - 316 .
  153. Corbett D, Evans S, Thomas C, et al. MK-801 reduced cerebral ischemic injury by inducing hypothermia. Brain Res 1990; 514:300-304.
  154. Nurse S, Corbett D. Neuroprotection after several days of mild, drug-induced hypothermia. J Cereb Blood Flow Metab 1996; 16:474-480.
  155. Baena RC, Busto R, Dietrich WD, et al. Hyperthermia delayed by 24 hours aggravates neuronal damage in rat hippocampus following global ischemia. Neurology 1997; 48:768-773.
  156. Van der Heyden JA, Zethof TJ, Olivier B. Stress-induced hyperthermia in singly housed mice. Physiol Behav 1997; 62:463-470.
  157. Clark DL, DeBow SB, Iseke MD, et al. Stress-induced fever after postischemic rectal temperature measurements in the gerbil. Can J Physiol Pharmacol 2003; 81:880-883.
  158. Colbourne F , Sutherland GR , Auer RN . An automated system for regulating brain temperature in awake and freely moving rats. J Neurosci Meth 1996; 67:185-190.
  159. Barber PA , Hoyte L , Colbourne F , et al. Temperature-regulated model of focal ischemia in the mouse. A study with histopathological and behavioral outcomes. Stroke 2004; 35:1720-1725.
  160. Siemkowicz E, Hansen AJ. Clinical restitution following cerebral ischemia in hypo-, normo- and hyperglycemic rats. Acta Neurol Scand 1978; 58:1-8.
  161. Kalimo H, Rehncrona S, Soderfeldt B, et al. Brain lactic acidosis and ischemic cell damage: 2. Histopathology. J Cereb Blood Flow Metab 1981; 1:313-327.
  162. Dietrich WD, Alonso OF, Busto R. Moderate hyperglycemia worsens acute blood-brain barrier injury after forebrain ischemia in rats. Stroke 1993; 24:111-116.
  163. Garnier P, Bertrand N, Flamand B, et al. Preischemic blood glucose supply to the brain modulates HSP(72) synthesis and neuronal damage in gerbils. Brain Res 1999; 836:245-255.
  164. Kondo F, Kondo Y, Makino H, et al. Delayed neuronal death in hippocampal CA1 pyramidal neurons after forebrain iscemia in hyperglycemic gerbil: amelioration by indomethacin. Brain Res 2000 ; 853:93-98.
  165. Warner DS, Todd MM, Dexter F, et al. Temporal thresholds for hyperglycemia-augmented ischemic brain damage in rats. Stroke 1995; 26:655-660.
  166. Li P-A, Shamloo M, Katsura K, et al. Critical values for plasma glucose in aggravating ischaemic brain damage: correlation to extracellular pH. Neurobiol Dis 1995; 2:97-108.
  167. Combs DJ, Reuland DS, Martin DB, et al. Glycolytic inhibition by 2-deoxyglucose reduces hypergly-cemia-associated mortality and morbidity in the ischemic rat. Stroke 1986; 17:989-994.
  168. Hansen AJ . The extracellular potassium concentration in brain cortex following ischemia in hypo-and hyperglycemic rats. Acta Physiol Scand 1978; 102:324-329.
  169. Katsura K, Kristián T, Smith M-L, et al. Acidosis induced by hypercapnia exaggerates ischemic brain injury. J Cereb Blood Flow Metab 1994; 14:243-250.
  170. Kirino T, Sano K. Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol (Berl) 1984; 62:201-208.
  171. Kirino T, Sano K. Fine structural nature of delayed neuronal death following ischemia in the gerbil hippocampus. Acta Neuropathol (Berl) 1984; 62:209-218.
  172. Colbourne F, Li H, Buchan AM. Continuing postischemic neuronal death in CA1. Influence of ischemia duration and cytoprotective doses of NBQX and SNX-111 in rats. Stroke 1999; 30:662-668.
  173. Morita F, Wen T-C, Tanaka J, et al. Protective effect of a prosaposin-derived, 18-mer peptide on slowly progressive neuronal degeneration after brief ischemia. J Cereb Blood Flow Metab 2001 ; 21 : 1295 - 1302 .
  174. Morse JK, Davis JN. Regulation of ischemic hippocampal damage in the gerbil: adrenalectomy alters the rate of CA1 cell disappearance. Exp Neurol 1990; 110:86-92.
  175. Pérez-Pinzón MA, Xu G-P, Dietrich WD, et al. Rapid preconditioning protects rats against ischemic neuronal damage after 3 but not 7 days of reperfusion following global cerebral ischemia. J Cereb Blood Flow Metab 1997; 17:175-182.
  176. Busto R, Dietrich WD, Globus MY-T, et al. Postischemic moderate hypothermia inhibits CA1 hippocampal ischemic neuronal injury. Neurosci Lett 1989; 102:299-304.
  177. Dietrich WD, Busto R, Alonso O, et al. Intraischemic but not postischemic brain hypothermia protects chronically following global forebrain ischemia in rats. J Cereb Blood Flow Metab 1993; 13:541-549.
  178. Corbett D, Crooks P. Ischemic preconditioning: a long-term survival study using behavioral and histological endpoints. Brain Res 1997; 760:129-136.
  179. Dowden J, Corbett D. Ischemic preconditioning in 18- to 20-month-old gerbils. Long-term survival with functional outcome measures. Stroke 1999; 30:1240-1246.
  180. Liu J, Solway K, Messing RO, et al. Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci 1998; 18:7768-7778.
  181. Sharp FR, Liu J, Bernabeu R. Neurogenesis following brain ischemia. Dev. Brain Res. 2002; 134:23-30.
  182. Schmidt W , Reymann KG . Proliferating cells differentiate into neurons in the hippocampal CA1 region of gerbils after global cerebral ischemia. Neurosci Lett 2002 ; 334 : 153 - 156 .
  183. Beck T , Wree A , Schleicher A . Glucose utilization in rat hippocampus after long-term recovery from ischemia. J Cereb Blood Flow Metab 1990; 10:542-549.
  184. Bonnekoh P, Barbier A, Oschlies U, et al. Selective vulnerability in the gerbil hippocampus: morphological changes after 5 min ischemia and long survival times. Acta Neuropathol 1990 ; 80:18-25.
  185. Elsersy H , Sheng H , Lynch JR , et al. Effects of isoflurane anesthesia versus fentanyl-nitrous oxide anesthesia on long-term outcome from severe forebrain ischemia in the rat . Anesthesiology 2004; 100:1160-1166.
  186. Bendel O, Bueters T, von Euler M, et al. Reappearance of hippocampal CA1 neurons after ischemia is associated with recovery of learning and memory. J Cereb Blood Flow Metab 2005; 25:1586-1595.
Metabolism Masterclass

Metabolism Masterclass

Are You Sick And Tired Of All The Fat-Burning Tricks And Trends That Just Don’t Deliver? Well, Get Set To Discover The Easy, Safe, Fast, And Permanent Way To Mega-Charge Your Metabolism And Lose Excess Fat Once And For All! This Weight Blasting Method Is Easy AND Natural… And Will Give You The Hot Body And Killer Energy Levels You’ve Been Dreaming Of.

Get My Free Ebook


Post a comment