References

Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen T (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59:1114-1128

Baltimore R, Christie C, Smith G (1989) Immunohistological localization of Pseudomonas aeruginosa in lungs from patients with cystic fibrosis. Implications for the pathogenesis of progressive lung deterioration. Am Rev Respir Dis 140:1650-1661 Bigger JW (1944) Treatment of staphylococcal infections with penicillin. Lancet 2:497-500 Bollert FG, Paton JY, Marshall TG, Calvert J, Greening AP, Innes JA (1999) Recombinant DNase in cystic fibrosis: a protocol for targeted introduction through n-of-1 trials. Scottish Cystic Fibrosis Group. Eur Respir J 13:107-113 Borriello G, Werner E, Roe F, Kim AM, Ehrlich GD, Stewart PS (2004) Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 48:2659-2664 Branda SS, Vik A, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20-26

Brooun A, Liu S, Lewis K (2000) A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 44:640-646 Bullen JJ, Rogers HJ, Spalding PB, Ward CG (2005) Iron and infection: the heart of the matter.

FEMS Immunol Med Microbiol 43:325-330 Chambless JD, Hunt SM, Stewart PS (2006) A three-dimensional computer model of four hypothetical mechanisms protecting biofilms from antimicrobials. Appl Environ Microbiol 72:2005-2013

Chitambar CR, Narasiham J (1991) Targeting iron-dependent DNA synthesis with gallium and transferrin-gallium. Pathobiology 59:3-10 Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infection. Science 284:1318-1322 D'Argenio DA, Calfee MW, Rainey PB, Pesci EC (2002) Autolysis and autoaggregation in

Pseudomonas aeruginosa colony morphology mutants. J Bacteriol 184:6481-6489 Davies DG, Parsek MR, Pearson JP, Iglewski BH (1998) The involvement of cell-to-cell signals in the development of bacterial biofilm. Science 280:295-298 deBeer DS, Stoodley P, Roe F, Lewandowski Z (1994) Effects of biofilms structures on oxygen distribution and mass transport. Biotechn Bioeng 43:1131-1138 Deretic V, Schurr MJ, Yu H (1995) Pseudomonas aeruginosa, mucoidy and the chronic infection phenotype in cystic fibrosis. Trends Microbiol 3:351-356 Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:176-193 Drenkard E, Ausubel FM (2002) Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416:740-743 Field TR, White A, Elborn JS, Tunney MM (2005) Effect of oxygen limitation on the in vitro antimicrobial susceptibility of clinical isolates of Pseudomonas aeruginosa grown planktoni-cally and as biofilms. Eur J Clin Microbiol Infect Dis 24:677-687 Fonseca AP, Extremina C, Fonseca AF, Sousa JC (2004) Effect of subinhibitory concentration of piperacillin/tazobactam on Pseudomonas aeruginosa. J Med Microbiol 53:903-910 Friedman L, Kolter R (2004a) Genes involved in matrix formation in Pseudomonas aeruginosa

PA14 biofilms. Mol Microbiol 51:675-690 Friedman L, Kolter R (2004b) Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186:4457-4465 Gavin PJ, Suseno MT, Cook FV, Peterson LR, Thomson RB Jr (2003) Left-sided endocarditis caused by Pseudomonas aeruginosa: successful treatment with meropenem and tobramycin. Microbiol Infect Dis 47:427-430 Gilbert P, Collier PJ, Brown MR (1990) Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. Antimicrob Agents Chemother 34:1865-1868

Gilbert P, Maira-Litran T, McBain AJ, Rickard AH, Whyte FW (2002) The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol 46:202-256 Goodman AL, Kulasekara B, Rietsch A, Boyd D, Smith RS, Lory S (2004) The signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7:745-754

Gordon CA, Hodges NA, Marriott C (1988) Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived Pseudomonas aeruginosa. J Antimicrob Chemother 22:667-674

Govan RJW, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539-574 Haagensen JAJ, Klausen M, Ernst RK, Miller SI, Folkesson A, Tolker-Nielsen T, Molin S (2007) Differentiation and distribution of colistin- and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms. J Bacteriol 189:28-37 Hancock REW, Speert DP (2000) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatments. Drug Resist Update 3:247-255 Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S, Givskov M, Parsek MR (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183:5395-5401

Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BKM, Molin S (2000) Quantification of biofilm structures by the novel computer program by the novel computer program COMSTAT. Microbiology 146:2395-2407 Heydorn A, Ersboll BK, Kato J, Hentzer M, Parsek MR, Tolker-Nielsen T, Givskov M, Molin S (2002) Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol 68:2008-2017 Hickman JW, Tifrea DF, Harwood CS (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A 102:14422-14427 Hoffman LR, D'Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436:1171-1175 Hoiby N (2006) P. aeruginosa in cystic fibrosis patients resist host defenses, antibiotics. Microbe 1:571-577

Hoiby N, Johansen HK, Moser C, Song Z, Ciofu O, Kharazmi A (2001) Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect 3:23-35 Ishida H, Ishida Y, Kurosaka Y, Otani T, Sato K, Kobayashi H (1998) In vitro and in vivo activities of levofloxacin against biofilm-producing Pseudomonas aeruginosa. Antimicrob Agents Chemother 42:1641-1645 Jackson KD, Starkey M, Kremer S, Parsek MR, Wozniak DJ (2004) Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol 186:4466-4475 Jefferson KK, Goldmann DA, Pier GB (2005) Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrob Agents Chemother 49:2467-2473 Jenal U, Malone J (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40:385-407

Kaneko Y, Thoendel M, Olakami O, Britigan BE, Singh PK (2007) The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest 117:877-888 Kirisits MJ, Prost L, Starkey M, Parsek MR (2005) Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 71:4809-4821

Klausen M, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T (2003a) Biofilm formation by Pseudomonas aeruginosa wild type, flagella, and type IV pili mutants. Mol Microbiol 48:1511-1524 Klausen M, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T (2003b) Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50:61-68 Lam J, Chan R, Lam K, Costerton JW (1980) Production of mucoid microcolonies by

Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun 28:546-556 Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optional sectioning of microbial biofilms. J Bacteriol 173:6558-6567

Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5:48-56 Linares JF, Gustafsson I, Baquero F, Martinez JL (2006) Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci U S A 103:19484-19489 Linker A, Jones RS (1966) A new polysaccharide resembling alginic acid isolated from pseu-

domonads. J Biol Chem 241:3845-3851 Ma L, Jackson KD, Landry RM, Parsek MR, Wozniak DJ (2006) Analysis of Pseudomonas aeruginosa conditional Psl variants reveals roles for the Psl polysaccharide in adhesion and maintaining biofilm structure post attachment. J Bacteriol 188:8213-8221 Mah TF, O'Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34-39

Mah TF, Pitts B, Pellok B, Walker GC, Stewart PS, O'Toole GA (2003) A genetic basis for

Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306-310 Matsukawa M, Greenberg EP (2004) Putative exopolysaccharide synthesis genes influence

Pseudomonas aeruginosa biofilm development. J Bacteriol 186:4449-4456 Nivens DE, Ohman DE, Williams J, Franklin MJ (2001) Role of alginate and its O-acetylation in the formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol 183:1047-1057

O'Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295-304 Overhage J, Schemionek M, Webb JS, Rehm BHA (2005) Expression of the psl operon in Pseudomonas aeruginosa PAO1 biofilms: PslA performs an essential function in biofilm formation. Appl Environ Microbiol 71:4407-4413 Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1998) Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechn Bioeng 58:101-116

Potera C (1999) Forging a link between biofilms and disease. Science 283:1837-1839 Ramsey DM, Wozniak DJ (2005) Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol 56:309-322

Ratjen F, Paul K, van Koningsbruggen S, Breitenstein S, Rietschel E, Nikolaizik W (2005) DNA concentrations in BAL fluid of cystic fibrosis patients with early lung disease: influence of treatment with streptodornase alpha. Pediatr Pulmonol 39:1-4 Richards MJ, Edwards JR, Culver DH, Gaynes RP (1999) Nosocomial infections in medical intensive care units in the United States. National nosocomial infections surveillance system. Crit Care Med 27:887-892 Schooling SR, Beveridge TJ (2006) Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188:5945-5957 Shigeta M, Tanaka G, Komatsuzawa H, Sugai M, Suginaka H, Usui T (1997) Permeation of antimicrobial agents through Pseudomonas aeruginosa biofilms: a simple method. Chemotherapy 43:340-345

Shrout J, Chopp DL, Just CL, Hentzer M, Givskov M, Parsek MR (2006) The impact of quorum-sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 62:1264-1277 Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762-764

Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183:6746-6751 Stapper AP, Narasimhan G, Ohman DE, Barakat JH, Hentzer M, Molin S, Kharazmi A, Hoiby N, Mathee K (2004) Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. J Med Microbiol 53:679-690

Steinberger RE, Holden PA (2005) Extracellular DNA in single- and multiple-species unsaturated biofilms. Appl Environ Microbiol 71:5404-5410

Stewart PS, Peyton BM, Drury WJ, Murga R (1993) Quantitative observations of the heterogeneities in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 59:327-329 Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187-209 Sutherland IW (2001) The biofilm matrix - an immobilized by dynamic microbial environment.

Trends Microbiol 9:222-227 Szmolay B, Klapper I, Dockery J, Stewart PS (2005) Adaptive responses to antimicrobial agents in biofilms. Environ Microbiol 7:1186-1191 Vasseur P, Vallet-Gely I, Soscia C, Genin S, Filloux A (2005) The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation. Microbiology 151:985-997

Ventre I, Goodman AL, Vallet-Gely I, Vasseur P, Soscia C, Molin S, Bleves SL, Lazdunski A, Lory S, Filloux A (2006) Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci U S A 103:171-176 Vrany J, Stewart PS, Suci P (1997) Comparison of recalcitrance to ciprofloxacin and levofloxacin exhibited by Pseudomonas aeruginosa biofilms displaying rapid-transport characteristics. Antimicrob Agents Chemotherap 41:1352-1358 Walker TS, Tomlin KL, Worthen GS, Poch KR, Lieber JG, Saavedra MT, Fessler MB, Malcolm KC, Vasil ML, Nick JA (2005) Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect Immun 73:3693-3701 Walters MC III, Roe F, Bugnicourt A, Franklin MJ, Stewart PS (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeru-ginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemotherap 47:317-323

Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487 Wimpenny JWT, Colasanti R (1997) A unifying hypothesis for the structure of microbial biofilms based on cellular automaton model. FEMS Microbiol Ecol 22:1-16 Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A, Meyer K, Birrer P, Bellon G, Berger J, Weiss T, Botzenhart K, Yankaskas J, Randell S, Boucher R, Doring G (2002) Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109:317-325 Wozniak DJ, Keyser RA (2004) Effects of subinhibitory concentrations of macrolide antibiotics on Pseudomonas aeruginosa. Chest 125:62S-69S Wozniak DJ, Wyckoff TJO, Starkey M, Keyser RA, Azadi P, O'Toole GA, Parsek MR (2003) Alginate is not a significant component of the exopolysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A 100:7907-7912 Yang L, Barken KB, Skindersoe ME, Christensen AB, Givskov M, Tolker-Nielsen T (2007) Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 153:1318-1328 Yoon SS, Hennigan RF, Hilliard GM, Ochsner UA, Parvatiyar K, Kamani MC, Allen HL, KeKievit TR, Gardener PR, Schwab U, Rowe JJ, Iglewski BH, McDermott TR, Mason RP, Wozniak DJ, Hancock REW, Parsek MR, Noah TL, Boucher RC, Hassett DJ (2002) Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell 3:593-603

0 0

Post a comment