1. Association, A.H., 1999 heart and stroke: statistical update. 1999, American Heart Association.
  2. Institute, N.H.L.a.B., Morbidity and mortality chartbook on cardiovascular, lung, and blood diseases. 1998, Washington: US Department of Health and Human Services.
  3. National Heart, L.a.B.I., NHLBI fact book, fiscal year 1990. 1991, Washington: US Department of Health and Human Services.
  4. Gordon, T., and W.B. Kannel, Premature mortality from coronary heart disease. The Framingham study. JAMA, 1971. 215(10): 1617-25.
  5. Thom, T., Kannel, WB, Silbershatz, H, et al., Cardiovascular diseases in the U.S. and preventive approaches. A.R. Fuster V, O'Rourke, RA (eds.) Hurst's the heart. 2001, New York: McGraw-Hill, pp. 3-17.
  6. Statistics, N.C.f.H., Vital statistics of the United States. Vol. II, Mortality Part A, 1991. 1988, Hyattsville, MD: Center for Disease Control and Prevention.
  7. Lloyd-Jones, D.M., et al., Lifetime risk of developing coronary heart disease. Lancet, 1999. 353(9147): 89-92.
  8. Kannel, W.B., Prevalence, incidence, and mortality of coronary heart disease. E.J.T. V. Fuster, Elizabeth G. Nabel (eds.). Atherothrombosis and coronary artery disease, Chapter 2, 2nd edn. 2005, Philadelphia, PA: Lippincott Williams & Wilkins.
  9. Statistics., N.C.H., Deaths of Hispanic Origin, 15 Reporting States, 1979-1981. Vital and Health Statistics, Series 20 No. 18, DHHS Publication No. (PHS). 1990. 91-1855.
  10. Windaus, A., Ober, den gehalt normaler und atheromatoser aorten an cholesterjn und chol-esterinestern. Zeitschr Physiol Chem, 1910. 67: 174-176.
  11. Vartiainen I., and Kanerva K., Arteriosclerosis and wartime. Ann Med Inntern Fenn, 1947. 36: 748-58.
  12. Malmros H., The relation of nutrition to health: a statistical study of the effect of the wartime on arteriosclerosis, cardiosclerosis, tuberculosis. Acta Med Scand Suppl, 1950. 246: 137-53.
  13. Cui, Y., et al., Non-high-density lipoprotein cholesterol level as a predictor of cardiovascular disease mortality. Arch Intern Med, 2001. 161(11): 1413-9.
  14. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation, 2002. 106(25): 3143-421.
  15. Carleton, R.A., et al., Report of the Expert Panel on Population Strategies for Blood Cholesterol Reduction. A statement from the National Cholesterol Education Program, National Heart, Lung, and Blood Institute, National Institutes of Health. Circulation, 1991. 83(6): 2154-232.
  16. Rosenfeld, L., Lipoprotein analysis. Early methods in the diagnosis of atherosclerosis. Arch Pathol Lab Med, 1989. 113(10): 1101-10.
  17. EVALUATION of serum lipoprotein and cholesterol measurements as predictors of clinical complications of atherosclerosis; report of a cooperative study of lipoproteins and atherosclerosis. Circulation, 1956. 14(4 Part 2): 691-742.
  18. Sharrett, A.R., et al., Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A-I and B, and HDL density subfractions: The Atherosclerosis Risk in Communities (ARIC) Study. Circulation, 2001. 104(10): 1108-13.
  19. Dahlen, G., K. Berg, and M.H. Frick, Lp(a) lipoprotein/pre-betal-lipoprotein, serum lipids and atherosclerotic disease. Clin Genet, 1976. 9(6): 558-66.
  20. McLean, J.W., et al., cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature, 1987. 330(6144): 132-7.
  21. Howard, G.C., and S.V. Pizzo, Lipoprotein(a) and its role in atherothrombotic disease. Lab Invest, 1993. 69(4): 373-86.
  22. Grundy, S.M., Small LDL, atherogenic dyslipidemia, and the metabolic syndrome. Circulation, 1997. 95(1): 1-4.
  23. Coresh, J., and P.O. Kwiterovich, Jr., Small, dense low-density lipoprotein particles and coronary heart disease risk: A clear association with uncertain implications. JAMA, 1996. 276(11): 914-5.
  24. Hokanson, J.E., and M.A. Austin, Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk, 1996. 3(2): 213-9.
  25. Mensink, R.P., Effects of the individual saturated fatty acids on serum lipids and lipoprotein concentrations. Am J Clin Nutr, 1993. 57(5 Suppl): 711S-714S.
  26. Katan, M.B., P.L. Zock, and R.P. Mensink, Effects of fats and fatty acids on blood lipids in humans: an overview. Am J Clin Nutr, 1994. 60(6 Suppl): 1017S-22S.
  27. Mattson, F.H., and S.M. Grundy, Comparison of effects of dietary saturated, monounsatu-rated, and polyunsaturated fatty acids on plasma lipids and lipoproteins in man. J Lipid Res, 1985. 26(2): 194-202.
  28. Spady, D.K., and J.M. Dietschy, Dietary saturated triacylglycerols suppress hepatic low density lipoprotein receptor activity in the hamster. Proc Natl Acad Sci USA, 1985. 82(13): 4526-30.
  29. Keys, A., and R.W. Parlin, Serum cholesterol response to changes in dietary lipids. Am J Clin Nutr, 1966. 19(3): 175-81.
  30. Denke, M.A., and S.M. Grundy, Comparison of effects of lauric acid and palmitic acid on plasma lipids and lipoproteins. Am J Clin Nutr, 1992. 56(5): 895-8.
  31. Cater, N.B., H.J. Heller, and M.A. Denke, Comparison of the effects of medium-chain tria-cylglycerols, palm oil, and high oleic acid sunflower oil on plasma triacylglycerol fatty acids and lipid and lipoprotein concentrations in humans. Am J Clin Nutr, 1997. 65(1): 41-5.
  32. Bonanome, A., and S.M. Grundy, Effect of dietary stearic acid on plasma cholesterol and lipoprotein levels. N Engl J Med, 1988. 318(19): 1244-8.
  33. Denke, M.A., and S.M. Grundy, Effects of fats high in stearic acid on lipid and lipoprotein concentrations in men. Am J Clin Nutr, 1991. 54(6): 1036-40.
  34. Hegsted, D.M., et al., Quantitative effects of dietary fat on serum cholesterol in man. Am J Clin Nutr, 1965. 17(5): 281-95.
  35. Mensink, R.P., and M.B. Katan, Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects. N Engl J Med, 1990. 323(7): 439-45.
  36. Carroll, K.K., and H.T. Khor, Effects of level and type of dietary fat on incidence of mammary tumors induced in female Sprague-Dawley rats by 7,12-dimethylbenz(a)anthracene. Lipids, 1971. 6(6): 415-20.
  37. Weyman, C., et al., Letter: Linoleic acid as an immunosuppressive agent. Lancet, 1975. 2(7923): 33.
  38. Jackson, R.L., et al., Influence of polyunsaturated and saturated fats on plasma lipids and lipoproteins in man. Am J Clin Nutr, 1984. 39(4): 589-97.
  39. Grundy, S.M., Effects of polyunsaturated fats on lipid metabolism in patients with hypertriglyceridemia. J Clin Invest, 1975. 55(2): 269-82.
  40. Parthasarathy, S., et al., Low density lipoprotein rich in oleic acid is protected against oxidative modification: implications for dietary prevention of atherosclerosis. Proc Natl Acad Sci USA, 1990. 87(10): 3894-8.
  41. Sanders, T.A., et al., Triglyceride-lowering effect of marine polyunsaturates in patients with hypertriglyceridemia. Arteriosclerosis, 1985. 5(5): 459-65.
  42. Williams, K.J., and I. Tabas, The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol, 1995. 15(5): 551-61.
  43. Gross, M., et al., Plasma F2-isoprostanes and coronary artery calcification: the CARDIA Study. Clin Chem, 2005. 51(1): 125-31.
  44. Ridker, P.M., R.J. Glynn, and C.H. Hennekens, C-reactive protein adds to the predictive value of total and HDL cholesterol in determining risk of first myocardial infarction. Circulation, 1998. 97(20): 2007-11.
  45. Steinberg, D., et al., Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med, 1989. 320(14): 915-24.
  46. Ross, R., Atherosclerosis - an inflammatory disease. N Engl J Med, 1999. 340(2): 115-26.
  47. Goldstein, J.L., Familial hypercholesterolemia. C.S. Scriver (ed.) The metabolic and molecular basis of inherited disease, 7th edn. 1995, New York: McGraw-Hill Health Profession Division, 1981.
  48. Steinberg, D., Lewis A. Conner Memorial Lecture. Oxidative modification of LDL and atherogenesis. Circulation, 1997. 95(4): 1062-71.
  49. Parthasarathy, S., et al., Macrophage oxidation of low density lipoprotein generates a modified form recognized by the scavenger receptor. Arteriosclerosis, 1986. 6(5): 505-10.
  50. Parthasarathy, S., et al., Oxidative modification of beta-very low density lipoprotein. Potential role in monocyte recruitment and foam cell formation. Arteriosclerosis, 1989. 9(3): 398-404.
  51. Berliner, J., Introduction. Lipid oxidation products and atherosclerosis. Vascul Pharmacol, 2002. 38(4): 187-91.
  52. Gaut, J.P., and J.W. Heinecke, Mechanisms for oxidizing low-density lipoprotein. Insights from patterns of oxidation products in the artery wall and from mouse models of atherosclerosis. Trends Cardiovasc Med, 2001. 11(3-4): 103-12.
  53. Bey, E.A., and M.K. Cathcart, In vitro knockout of human p47phox blocks superoxide anion production and LDL oxidation by activated human monocytes. J Lipid Res, 2000. 41(3): 489-95.
  54. Schultz, D., and D.G. Harrison, Quest for fire: seeking the source of pathogenic oxygen radicals in atherosclerosis. Arterioscler Thromb Vasc Biol, 2000. 20(6): 1412-3.
  55. Bjorkhem, I., U. Diczfalusy, and D. Lutjohann, Removal of cholesterol from extrahepatic sources by oxidative mechanisms. Curr Opin Lipidol, 1999. 10(2): 161-5.
  56. Hulten, L.M., et al., Oxysterols present in atherosclerotic tissue decrease the expression of lipoprotein lipase messenger RNA in human monocyte-derived macrophages. J Clin Invest, 1996. 97(2): 461-8.
  57. Pratico, D., et al., Localization of distinct F2-isoprostanes in human atherosclerotic lesions. J Clin Invest, 1997. 100(8): 2028-34.
  58. Huber, J., et al., Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions. Arterioscler Thromb Vasc Biol, 2002. 22(1): 101-7.
  59. Subbanagounder, G., et al., Epoxyisoprostane and epoxycyclopentenone phospholipids regulate monocyte chemotactic protein-1 and interleukin-8 synthesis. Formation of these oxidized phospholipids in response to interleukin-1beta. J Biol Chem, 2002. 277(9): 7271-81.
  60. Berliner, J.A., et al., Evidence for a role of phospholipid oxidation products in atherogenesis. Trends Cardiovasc Med, 2001. 11(3-4): 142-7.
  61. Leitinger, N., Oxidized phospholipids as modulators of inflammation in atherosclerosis. Curr Opin Lipidol, 2003. 14(5): 421-30.
  62. Mackness, M.I., et al., Paraoxonase and coronary heart disease. Curr Opin Lipidol, 1998. 9(4): 319-24.
  63. Yamada, Y., et al., Correlations between plasma platelet-activating factor acetylhydrolase (PAF-AH) activity and PAF-AH genotype, age, and atherosclerosis in a Japanese population. Atherosclerosis, 2000. 150(1): 209-16.
  64. Camitta, M.G., et al., Cyclooxygenase-1 and -2 knockout mice demonstrate increased cardiac ischemia/reperfusion injury but are protected by acute preconditioning. Circulation,
  65. 104(20): 2453-8.
  66. Berliner, J.A., and A.D. Watson, A role for oxidized phospholipids in atherosclerosis. N Engl J Med, 2005. 353(1): 9-11.
  67. Pratico, D., et al., Acceleration of atherogenesis by COX-1-dependent prostanoid formation in low density lipoprotein receptor knockout mice. Proc Natl Acad Sci USA, 2001. 98(6): 3358-63.
  68. Miller, S.B., Prostaglandins in health and disease: an overview. Semin Arthritis Rheum, 2006. 36(1): 37-49.
  69. Jala, V.R., and B. Haribabu, Leukotrienes and atherosclerosis: new roles for old mediators. Trends Immunol, 2004. 25(6): 315-22.
  70. Khan, Z., and C.D. Tripathi, Leukotrienes and atherosclerosis. Indian Heart J, 2005. 57(2): 175-80.
  71. Reape, T.J., and P.H. Groot, Chemokines and atherosclerosis. Atherosclerosis, 1999. 147(2): 213-25.
  72. Suzuki, H., et al., A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature, 1997. 386(6622): 292-6.
  73. Febbraio, M., et al., Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest, 2000. 105(8): 1049-56.
  74. Podrez, E.A., et al., Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36. J Biol Chem, 2002. 277(41): 38503-16.
  75. Chai, Y.C., et al., Smooth muscle cell proliferation induced by oxidized LDL-borne lyso-phosphatidylcholine. Evidence for FGF-2 release from cells not extracellular matrix. Vascul Pharmacol, 2002. 38(4): 229-37.
  76. Kadl, A., et al., Analysis of inflammatory gene induction by oxidized phospholipids in vivo by quantitative real-time RT-PCR in comparison with effects of LPS. Vascul Pharmacol,
  77. 38(4): 219-27.
  78. Tselepis, A.D., and M. John Chapman, Inflammation, bioactive lipids and atherosclerosis: potential roles of a lipoprotein-associated phospholipase A2, platelet activating factor-acetylhydrolase. Atheroscler Suppl, 2002. 3(4): 57-68.
  79. Ares, M.P., et al., Oxidized LDL induces transcription factor activator protein-1 but inhibits activation of nuclear factor-kappa B in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 1995. 15(10): 1584-90.
  80. Nagy, L., et al., Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell, 1998. 93(2): 229-40.
  81. Stafforini, D.M., et al., Platelet-activating factor acetylhydrolases. J Biol Chem, 1997. 272(29): 17895-8.
  82. Ahmed, Z., et al., Apolipoprotein A-I promotes the formation of phosphatidylcholine core aldehydes that are hydrolyzed by paraoxonase (PON-1) during high density lipoprotein oxidation with a peroxynitrite donor. J Biol Chem, 2001. 276(27): 24473-81.
  83. Tsimikas, S., et al., Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease. N Engl J Med, 2005. 353(1): 46-57.
  84. Tsimikas, S., et al., Increased plasma oxidized phospholipid:apolipoprotein B-100 ratio with concomitant depletion of oxidized phospholipids from atherosclerotic lesions after dietary lipid-lowering: a potential biomarker of early atherosclerosis regression. Arterioscler Thromb Vasc Biol, 2007. 27(1): 175-81.
  85. Beer, S.M., et al., Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE. J Biol Chem, 2004. 279(46): 47939-51.
  86. Teshima, Y., et al., Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ Res, 2003. 93(3): 192-200.
  87. Blanc, J., et al., Protective role of uncoupling protein 2 in atherosclerosis. Circulation, 2003. 107(3): 388-90.
  88. Echtay, K.S., et al., Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants. J Biol Chem, 2002. 277(49): 47129-35.
  89. Go, Y.M., et al., Evidence for peroxynitrite as a signaling molecule in flow-dependent activation of c-Jun NH(2)-terminal kinase. Am J Physiol, 1999. 277(4 Pt 2): H1647-53.
  90. Nelson, K.K., and J.A. Melendez, Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med, 2004. 37(6): 768-84.
  91. Fries, D.M., et al., Expression of inducible nitric-oxide synthase and intracellular protein tyrosine nitration in vascular smooth muscle cells: role of reactive oxygen species. J Biol Chem, 2003. 278(25): 22901-7.
  92. Herrera, B., et al., Reactive oxygen species (ROS) mediates the mitochondrial-dependent apoptosis induced by transforming growth factor (beta) in fetal hepatocytes. Faseb J, 2001. 15(3): 741-51.
  93. Krieg, T., et al., Mitochondrial ROS generation following acetylcholine-induced EGF receptor transactivation requires metalloproteinase cleavage of proHB-EGF. J Mol Cell Cardiol, 2004. 36(3): 435-43.
  94. Kimura, S., et al., Role of NAD(P)H oxidase- and mitochondria-derived reactive oxygen species in cardioprotection of ischemic reperfusion injury by angiotensin II. Hypertension, 2005. 45(5): 860-6.
  95. Goossens, V., et al., Redox regulation of TNF signaling. Biofactors, 1999. 10(2-3): 145-56.
  96. Gurgul, E., et al., Mitochondrial catalase overexpression protects insulin-producing cells against toxicity of reactive oxygen species and proinflammatory cytokines. Diabetes, 2004. 53(9): 2271-80.
  97. Chen, K., et al., Mitochondrial function is required for hydrogen peroxide-induced growth factor receptor transactivation and downstream signaling. J Biol Chem, 2004. 279(33): 35079-86.
  98. Stocker, R., and J.F. Keaney, Jr., Role of oxidative modifications in atherosclerosis. Physiol Rev, 2004. 84(4): 1381-478.
  99. Ishikawa, K., and Y. Maruyama, Heme oxygenase as an intrinsic defense system in vascular wall: implication against atherogenesis. J Atheroscler Thromb, 2001. 8(3): 63-70.
  100. Moellering, D.R., et al., Induction of glutathione synthesis by oxidized low-density lipopro-tein and 1-palmitoyl-2-arachidonyl phosphatidylcholine: protection against quinone-mediated oxidative stress. Biochem J, 2002. 362(Pt 1): 51-9.
  101. Levonen, A.L., et al., Biphasic effects of 15-deoxy-delta(12,14)-prostaglandin J(2) on glu-tathione induction and apoptosis in human endothelial cells. Arterioscler Thromb Vasc Biol, 2001. 21(11): 1846-51.
  102. Bea, F., et al., Induction of glutathione synthesis in macrophages by oxidized low-density lipoproteins is mediated by consensus antioxidant response elements. Circ Res, 2003. 92(4): 386-93.
  103. Izzotti, A., et al., Increased DNA alterations in atherosclerotic lesions of individuals lacking the GSTM1 genotype. Faseb J, 2001. 15(3): 752-7.
  104. Koide, S., et al., Association of polymorphism in glutamate-cysteine ligase catalytic subunit gene with coronary vasomotor dysfunction and myocardial infarction. J Am Coll Cardiol, 2003. 41(4): 539-45.
  105. Dedoussis, G.V., et al., Antiatherogenic effect of Pistacia lentiscus via GSH restoration and downregulation of CD36 mRNA expression. Atherosclerosis, 2004. 174(2): 293-303.
  106. Lapenna, D., et al., Aortic glutathione metabolic status: time-dependent alterations in fat-fed rabbits. Atherosclerosis, 2004. 173(1): 19-25.
Reducing Blood Pressure Naturally

Reducing Blood Pressure Naturally

Do You Suffer From High Blood Pressure? Do You Feel Like This Silent Killer Might Be Stalking You? Have you been diagnosed or pre-hypertension and hypertension? Then JOIN THE CROWD Nearly 1 in 3 adults in the United States suffer from High Blood Pressure and only 1 in 3 adults are actually aware that they have it.

Get My Free Ebook

Post a comment