References

  1. G. Zalba, G. San Jose, M.U. Moreno, M.A. Fortuno, A. Fortuno, F.J. Beaumont, J. Diez, Oxidative stress in arterial hypertension: role of NAD(P)H oxidase, Hypertension 38(6), 1395-1399 (2001).
  2. U. Landmesser, D.G. Harrison, Oxidative stress and vascular damage in hypertension, Coron. Artery Dis. 12(6), 455-461 (2001).
  3. K.K. Griendling, D. Sorescu, B. Lassegue, M. Ushio-Fukai, Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology, Arterioscler. Thromb. Vasc. Biol. 20, 2175-2183 (2000).
  4. F. Cosentino, J.C. Sill, Z.S. Katusic, Role of superoxide anions in the mediation of endothelium-dependent contractions, Hypertension 23, 229-235 (1994).
  5. R.M. Touyz, E.L. Schiffrin, Ang ¡¡-stimulated superoxide production is mediated via phospholipase D in human vascular smooth muscle cells, Hypertension 34(4), 976-982 (1999).
  6. A.M. Zafari, M. Ushio-Fukai, M. Akers, K. Griendling, Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy, Hypertension 32, 488-495 (1998).
  7. G.N. Rao, BC. Berk, Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression, Circ. Res. 70, 593-599 (1992).
  8. DG. Harrison, Cellular and molecular mechanisms of endothelial cell dysfunction, J. Clin. Invest. 2153-2157 (1997).
  9. J.H. Chin, S. Azhar, B.B. Hoffman, Inactivation of endothelium derived relaxing factor by oxidized lipoproteins, J. Clin. Invest. 89, 10-18 (1992).
  10. M.C. Zimmerman, E. Lazartigues, J.A. Lang, P. Sinnayah, I.M. Ahmad, D.R. Spitz, R.L. Davisson, Superoxide mediates the actions of angiotensin II in the central nervous system, Circ. Res. 91(11), 1038-1045 (2002).
  11. S. Kerr, J. Brosnan, M. McIntyre, J.L. Reid, A.F. Dominiczak, C.A. Hamilton, Superoxide anion production is increased in a model of genetic hypertension. Role of endothelium, Hypertension 33, 1353-1358 (1999).
  12. C.G. Schnackenberg, W. Welch, C.S. Wilcox, Normalization of blood pressure and renal vascular resistance in SHR with a membrane-permeable superoxide dismutase mimetic. Role of nitric oxide, Hypertension 32, 59-64 (1999).
  13. X. Chen, R.M. Touyz, J.B. Park, E.L. Schiffrin, Antioxidant effects of vitamins C and E are associated with altered activation of vascular NAD(P)H oxidase and superoxide dismutase in stroke-prone SHR, Hypertension 38(2), 606-611 (2001).
  14. A. Quinones-Galvan, A. Pucciarelli, A. Fratta-Pasini, U. Garbin, F. Franzoni, F. Galetta, A. Natali, L. Cominacini, E. Ferrannini, Effective blood pressure treatment improves LDL-cholesterol susceptibility to oxidation in patients with essential hypertension, J. Intern. Med. 250(4), 322-326 (2001).
  15. J.C. Romero, J.F. Reckelhoff, Role of angiotensin and oxidative stress in essential hypertension, Hypertension 34(4), 943-949 (1999).
  16. K.M. Hoagland, K.G. Maier, R.J. Roman, Contributions of 20-HETE to the antihypertensive effects of Tempol in Dahl salt-sensitive rats, Hypertension 41(3 Pt 2), 697-702 (2003).
  17. R.C. Sharma, H.N. Hodis, W.J. Mack, Probucol suppresses oxidant stress in hypertensive arteries. Immunohistochemical evidence, Am. J. Hypertens. 9, 577-590 (1996).
  18. J.K. Bendall, A.C. Cave, C. Heymes, N. Gall, A.M. Shah, Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice, Circulation 105(3), 293-296 (2002).
  19. J.M. Li, A.M. Shah, Mechanism of endothelial cell NADPH oxidase activation by angiotensin II. Role of the p47phox subunit, J. Biol. Chem. 278(14), 12094-12100 (2003).
  20. C. Berry, C.A. Hamilton, M.J. Brosnan, F.G. Magill, G.A. Berg, J.J. McMurray, A.F. Dominiczak, Investigation into the sources of superoxide in human blood vessels: angiotensin II increases superoxide production in human internal mammary arteries, Circulation 101(18), 2206-2212 (2000).
  21. E.J. Cantor, E.V. Mancini, R. Seth, X.H. Yao, T. Netticadan, Oxidative stress and heart disease: cardiac dysfunction, nutrition, and gene therapy, Curr. Hypertens. Rep. 5(3), 215-220 (2003).
  22. J. Zanzinger, Mechanisms of action of nitric oxide in the brain stem: role of oxidative stress, Auton. Neurosci. 98(1-2), 24-27 (2002).
  23. C.S. Wilcox, Reactive oxygen species: roles in blood pressure and kidney function, Curr. Hypertens. Rep. 4, 160-166 (2002).
  24. I. Fridovich, Superoxide anion radical, superoxide dismutases, and related matters, J. Biol. Chem. 272, 18515-18517 (1997).
  25. H.F. Bunn, P.J. Higgins, Oxygen sensing and molecular adaptation to hypoxia, Physiol. Rev. 76(3), 839-885 (1996).
  26. F. Cimino, F. Esposito, R. Ammendola, T. Russo, Gene regulation by reactive oxygen species, Curr. Top. Cell Regul. 35, 123-148 (1997).
  27. V. Darley-Usmar, H. Wiseman, B. Halliwell, Nitric oxide and oxygen radicals, a question of balance, FEBS Lett. 369, 13-15 (1995).
  28. D. Han, F. Antunes, R. Canali, D. Rettori, E. Cadenas, Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol, J. Biol. Chem. 278(8), 5557-5563 (2003).
  29. T.E. Decoursey, D. Morgan, V.V. Cherny, The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels, Nature 422, 531-534 (2003).
  30. F.Q. Schafer, G.R. Buettner, Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple, Free Radic. Biol. Med. 30(11), 1191-1212 (2001).
  31. C.A. Rice-Evans, R.H. Burdon. Free radical damage and its control (Amsterdam: Elsevier, 1994) pp. 25-27.
  32. K.M. Channon, T.J. Guzik, Mechanisms of superoxide production in human blood vessels: relationship to endothelial dysfunction, clinical and genetic risk factors, J. Physiol. Pharmacol. 53(4), 515-524 (2002).
  33. H. Cai, D.G. Harrison, Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress, Circ. Res. 87, 840-844 (2000).
  34. D. Wang, S. Hope, Y. Du, Paracrine role of adventitial superoxide anion in a model of genetic hypertension. Role of endothelium, Hypertension 33, 1353-1358 (1999).
  35. D. Sorescu, D. Weiss, B. Lassegue, R.E. Clempus, K. Szocs, G.P. Sorescu, L. Valppu, M.T. Quinn, J.D. Lambeth, J.D. Vega, W.R. Taylor, K.K. Griendling, Superoxide production and expression of nox family proteins in human atherosclerosis, Circulation 105(12), 1429-1435 (2002).
  36. J-I. Abe, B.C. Berk, Reactive oxygen species of signal transduction in cardiovascular disease, Trends Cardiovasc. Med. 8, 59-64 (1998).
  37. S. Rajagopalan, S. Kurz, T. Munzel, Angiotensin II mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation: contribution to alterations of vasomotor tone, J. Clin. Invest. 97, 1916-1923 (1996).
  38. S.A. Jones, V.B. O'Donnell, J.D. Wood, Expression of phagocyte NADPH oxidase components in human endothelial cells. Am. J. Physiol. H1626-H1634 (1996).
  39. S, Milstien, Z. Katusic, Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function, Biochem. Biophys. Res. Commun. 263(3), 681-684 (1999).
  40. F. Cosentino, J.E. Barker, M.P. Brand, S.J. Heales, E.R. Werner, J.R. Tippins, N. West, K.M. Channon, M. Volpe, T.F. Luscher, Reactive oxygen species mediate endothelium-dependent relaxations in tetrahydrobiopterin-deficient mice, Arterioscler. Thromb. Vasc. Biol. 21(4), 496-502 (2001).
  41. U. Landmesser, S. Dikalov, S.R. Price, L. McCann, T. Fukai, S.M. Holland, W.E. Mitch, D.G. Harrison, Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension, J. Clin. Invest. 111(8), 1201-1209 (2003).
  42. B. Lassegue, R.E. Clempus, Vascular NAD(P)H oxidases: specific features, expression, and regulation, Am. J. Physiol. Regul. Integr. Comp. Physiol. 285(2), R277-R297 (2003).
  43. H. Azumimi, N. Inoue, S. Takeshita, Expression of NADH/NADPH oxidase p22phox in human coronary arteries. Circulation 100, 1494-1498 (1999).
  44. K.K. Griendling, D. Sorescu, M. Ushio-Fukai, NAD(P)H oxidase: role in cardiovascular biology and disease, Circ. Res. 86, 494-501 (2000).
  45. B.M. Babior, J.D. Lambeth, W. Nauseef, The neutrophil NADPH oxidase, Arch. Biochem. Biophys. 397, 342-344 (2002).
  46. P.V. Vignais, The superoxide-generating NADPH oxidase: structural aspects and activation mechanism, Cell. Mol. Life Sci. 59(9), 1428-1459 (2002).
  47. J.H.W. Leusen, A.J. Verhoeven, D. Roos, Interactions between the components of the human NADPH oxidase: a review about the intrigues in the phox family, Front. Biosci. 1, 72-90 (1996).
  48. F.R. De Leo, K.V. Ulman, A.R. Davis, K.L. Jutila, M.T. Quinn, Assembly of the human neutrophil NADPH oxidase involves binding of p67phox and flavocytochrome b to a common functional domain in p47phox, J. Biol. Chem. 271, 17013-17020 (1996).
  49. M. Geiszt, A. Kapus, E. Ligeti, Chronic granulomatous disease: more than the lack of superoxide? J. Leukoc. Biol. 69(2), 191-196 (2001).
  50. R.M. Touyz, X. Chen, G. He, M.T. Quinn, E.L. Schiffrin, Expression of a gp91phox-containing leukocyte-type NADPH oxidase in human vascular smooth muscle cells - modulation by Ang II, Circ. Res. 90, 1205-1213 (2002).
  51. S. Muzaffar, J.Y. Jeremy, G.D. Angelini, K. Stuart-Smith, N. Shukla, Role of the endothe-lium and nitric oxide synthases in modulating superoxide formation induced by endotoxin and cytokines in porcine pulmonary arteries, Thorax 58(7), 598-604 (2003).
  52. F.E. Rey, P.J. Pagano, The reactive adventitia: fibroblast oxidase in vascular function, Arterioscler. Thromb. Vasc. Biol. 22(12), 1962-1971 (2002).
  53. K.K. Griendling, C.A. Minieri, J.D. Ollerenshaw, R.W. Alexander, Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells, Circ. Res. 74(6), 1141-1148 (1994).
  54. P.N. Seshiah, D.S. Weber, P. Rocic, L. Valppu, Y. Taniyama, K.K. Griendling, Angiotensin II stimulation of NAD(P)H oxidase activity. Upstream mediators, Circ. Res. 91, 406-413 (2002).
  55. R.M. Touyz, G. Yao, E.L. Schiffrin, c-Src induces phosphorylation and translocation of p47phox: role in superoxide generation by angiotensin II in human vascular smooth muscle cells, Arterioscler. Thromb. Vasc. Biol. 23(6), 981-987 (2003).
  56. K. Bedard, K.-H. Krause, The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87(1), 245-313 (2007).
  57. M. Geiszt, NADPH oxidases: new kids on the block. Cardiovasc. Res. 71, 289-299 (2006).
  58. H. Sumimoto, K. Miyano, R. Takeya, Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem. Biophys. Res. Commun. 338(1), 677-86 (2005).
  59. A.C. Cave, A.C. Brewer, A.N. Panicker, R. Ray, D.J. Grieve, S. Walker, A.M. Shah, NADPH oxidases in cardiovascular health and disease. Antioxid. Redox Signal. 8, 691-727 (2006).
  60. R.E. Clempus, D. Sorescu, A.E. Dikalova, L. Pounkova, P. Jo, G.P. Sorescu, H.H Schmidt, B. Lassegue, K.K Griendling. Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Arterioscler. Thromb. Vasc. Biol. 27(1), 42-48 (2007).
  61. Y.A. Suh, R.S. Arnold, B. Lassegue, Cell transformation by the superoxide-generating Mox-1, Nature 410, 79-82 (1999).
  62. B. Banfi, R.A. Clark, K. Steger, K-H. Krause, Two novel proteins activate superoxide generation by the NADPH oxidase Noxl, J. Biol. Chem. 278(6), 3510-3513 (2003).
  63. T. Ueyama, K. Lekstrom, S. Tsujibe, N. Saito, T.L. Leto, Subcellular localization and function of alternatively spliced Noxol isoforms, Free Radic. Biol. Med. 42(2), 180190 (2007).
  64. K. Matsuno, H. Yamada, K. Iwata, D. Jin, M. Katsuyama, M. Matsuki, S. Takai, K. Yamanishi, M. Miyazaki, H. Matsubara, C, Yabe-Nishimura. Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice, Circulation 112(17), 2677-2685 (2005).
  65. A. Dikalova, R. Clempus, B. Lassegue, G. Cheng, J. McCoy, S. Dikalov, A. San Martin, A. Lyle, D.S. Weber, D. Weiss, W.R. Taylor, H.H. Schmidt, G.K. Owens, J.D. Lambeth, K.K. Griendling, Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice, Circulation 112(17), 2668-2676 (2005).
  66. R.M. Touyz, C. Mercure, Y. He, D. Javeshghani, G. Yao, G.E. Callera, A. Yogi, N. Lochard, T.L. Reudelhuber, Angiotensin II-dependent chronic hypertension and cardiac hypertrophy are unaffected by gp91phox-containing NADPH oxidase, Hypertension 45(4), 530-537 (2005).
  67. R.P. Brandes, F.J. Miller, S. Beer, J. Haendeler, J. Hoffmann, T. Ha, S.M. Holland, A. Gorlach, R. Busse, The vascular NADPH oxidase subunit p47phox is involved in redox-mediated gene expression, Free Radic. Biol. Med. 32(11), 1116-1122 (2002).
  68. K.T. Moe, S. Aulia, F. Jiang, Y.L. Chua, T.H. Koh, M.C. Wong, G.J. Dusting, Differential upregulation of Nox homologues of NADPH oxidase by tumor necrosis factor-alpha in human aortic smooth muscle and embryonic kidney cells, J. Cell Mol. Med. 10(1), 231-239 (2006).
  69. Q.N. Diep, F. Amiri, R.M. Touyz, J.S. Cohn, D. Endemann, M.F. Neves, E.L. Schiffrin, PPARalpha activator effects on Ang II-induced vascular oxidative stress and inflammation, Hypertension 40(6), 866-871 (2002).
  70. P. Dandona, R. Karne, H. Ghanim, W. Hamouda, A. Aljada, C.H. Magsino, Carvedilol inhibits reactive oxygen species generation by leukocytes and oxidative damage to amino acids, Circulation 101, 122-124 (2000).
  71. K. Grote, I. Flach, M. Luchtefeld, E. Akin, S.M. Holland, H. Drexler, B. Schieffer, Mechanical stretch enhances mRNA expression and proenzyme release of matrix metallo-proteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species, Circ. Res. 92(11), e80-e86 (2003).
  72. C.F. Witteveen, J. Giovanelli, S. Kaufman, Reactivity of tetrahydrobiopterin bound to nitric-oxide synthase, J. Biol. Chem. 274(42), 29755-29762 (1999).
  73. J. Vasquez-Vivar, D. Duquaine, J. Whitsett, B. Kalyanaraman, S. Rajagopalan, Altered tetrahydrobiopterin metabolism in atherosclerosis: implications for use of oxidized tetrahy-drobiopterin analogues and thiol antioxidants, Arterioscler. Thromb. Vasc. Biol. 22(10), 1655-1661 (2002).
  74. Z. Bagi, A. Koller, Lack of nitric oxide mediation of flow-dependent arteriolar dilation in type I diabetes is restored by sepiapterin, J. Vasc. Res. 40(1), 47-57 (2003).
  75. A. Virdis, M. Iglarz, M.F. Neves, F. Amiri, R.M. Touyz, R. Rozen, E.L. Schiffrin, Effect of hyperhomocystinemia and hypertension on endothelial function in methylenetetrahy-drofolate reductase-deficient mice, Arterioscler. Thromb. Vasc. Biol. (Jun 26 2003) [Epub ahead of print].
  76. E. Podjarny, S. Benchetrit, M. Rathaus, A. Pomeranz, G. Rashid, J. Shapira, J. Bernheim, Effect of tetrahydrobiopterin on blood pressure in rats after subtotal nephrectomy, Nephron. Physiol. 94(1), 6-9 (2003).
  77. D. Yang, N. Levens, J.N. Zhang, P.M. Vanhoutte, M. Feletou, Specific potentiation of endothelium-dependent contractions in SHR by tetrahydrobiopterin, Hypertension 41(1), 136-142 (2003).
  78. T.J. Guzik, S. Mussa, D. Gastaldi, J. Sadowski, C. Ratnatunga, R. Pillai, KM. Channon, Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase, Circulation 105(14), 1656-1562 (2002).
  79. Y. Higashi, S. Sasaki, K. Nakagawa, Y. Fukuda, H. Matsuura, T. Oshima, K. Chayama, Tetrahydrobiopterin enhances forearm vascular response to acetylcholine in both normotensive and hypertensive individuals, Am. J. Hypertens. 15(4), 326-332 (2002).
  80. T. Finkel, Oxygen radicals and signaling, Curr. Opin. Cell Biol. 10, 248-253 (1998).
  81. P. Stralin, K. Karlsson, B.O. Johannson, S.L. Marklund, The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase, Arterioscler. Thromb. Vasc. Biol. 15, 2032-2036 (1995).
  82. M. McIntyre, D.F. Bohr, A.F. Dominiczak, Endothelial function in hypertension. The role of superoxide anion, Hypertension 34, 539-545 (1999).
  83. F.Q. Schafer, H.P. Wang, E.E. Kelley, K.L. Cueno, S.M. Martin, G.R. Buettner, Comparing beta-carotene, vitamin E and nitric oxide as membrane antioxidants, Biol. Chem. 383(3-4), 671-681 (2002).
  84. H.J. Forman, M. Torres, Redox signaling in macrophages, Mol. Aspects Med. 22, 189-216 (2001).
  85. R.M. Touyz, Recent advances in intracellular signalling in hypertension, Curr. Opin. Nephrol. Hypertens. 12(2), 165-174 (2003).
  86. K.K. Griendling, D.G. Harrison, Dual role of reactive oxygen species in vascular growth, Circ. Res. 85, 562-563 (1999).
  87. K.T. Turpaev, Reactive oxygen species and regulation of gene expression, Biochemistry 67(3), 281-292 (2002).
  88. S.R. Lee, K.S. Kwon, S.R. Kim, S.G. Rhee, Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor, J. Biol. Chem. 273(25), 15366-153372 (1998).
  89. T.C. Meng, T. Fukada, N.K. Tonks, Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo, Mol. Cell. 9(2), 387-399 (2002).
  90. J.J. Haddad, Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors, Cell. Signal. 14(11), 879-897 (2002).
  91. Y.R. Seo, M.R. Kelley, M.L. Smith, Selenomethionine regulation of p53 by a ref1-dependent redox mechanism, Proc. Natl. Acad. Sci. USA 99(22), 14548-14553 (2002).
  92. G. Fritz, Human APE/Ref-1 protein, Int. J. Biochem. Cell Biol. 32(9), 925-929 (2000).
  93. J.N. Anderson, O.H. Mortensen, G.H. Peters, P.G. Drake, L.F. Iversen, OH Olsen, P.G. Jansen, H.S. Andersen, N.K. Tonks, N.P. Moller, Structural and evolutionary relationships among protein tyrosine phosphatase domains, Mol. Cell Biol. 21, 7117-7136 (2001).
  94. J.M. Denu, K.G. Tanner, Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation, Biochemistry 7, 5633-5642 (1998).
  95. C. Blanchetot, L.G.J. Tertoolen, J.D. Hertog, Regulation of receptor protein tyrosine phosphatase a by oxidative stress, EMBO J. 21(4), 493-503 (2002).
  96. H. Kamata, Y. Shibukawa, S-I. Oka, H. Hirata, Epidermal growth factor receptor is modulated by redox through multiple mechanisms. Effects of reductants and H2O2, Eur. J. Biochem. 267, 1933-1944 (2000).
  97. K. Lee, W.J. Esselman, Inhibition of PTPS by H2O2 regulates the activation of distinct MAPK pathways, Free Radic. Biol. Med. 33(8), 1121-1132 (2002).
  98. S. Yang, M. Hardaway, G. Sun, W.L. Ries, L. Key Jr., Superoxide generation and tyrosine kinase, Biochem. Cell Biol. 78, 11-17 (2000).
  99. W. Droge, Free radicals in the physiological control of cell function, Physiol. Rev. 82, 47-95 (2001).
  100. R.M. Touyz, X.H. Wu, G. He, S. Salomon, E.L. Schiffrin, Increased angiotensin II-mediated Src signaling via epidermal growth factor receptor transactivation is associated with decreased C-terminal Src kinase activity in vascular smooth muscle cells from spontaneously hypertensive rats, Hypertension 39(2 Pt 2), 479-485 (2002).
  101. R.M. Touyz, E.L. Schiffrin, Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells, Pharmacol. Rev. 52(4), 639-672 (2000).
  102. G. Pearson, F. Robinson, T. Beers Gibson, Mitogen-activated protein kinase pathways: regulation and physiological functions, Endoc. Rev. 22(2), l53-l83 (200l).
  103. Q. Xu, Y. Liu, M. Gorospe, Acute hypertension activates mitogen-activated protein kinases in arterial wall, J. Clin. Invest. 97(2), 508-5l4 (l996).
  104. R.M. Touyz, C. Deschepper, J.B. Park, E.L. Schiffrin, Inhibition of mitogen-activated protein/extracellular signal-regulated kinase improves endothelial function and attenuates Ang II-induced contractility of mesenteric resistance arteries from spontaneously hypertensive rats, J. Hypertens. 20(6), ll27-ll34 (2002).
  105. M. Torres, Mitogen-activated protein kinase pathway in redox signaling, Front. Biosc. 8, 369-39l (2003).
  106. M. Ushio-Fukai, R.W. Alexander, M. Akers, K.K. Griendling, p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy, J. Biol. Chem. 273(24), l5022-l5029 (l998).
  107. R.M. Touyz, M. Cruzado, F. Tabet, G. Yao, S. Salomon, E.L. Schiffrin, Redox-dependent MAP kinase signaling by Ang II in vascular smooth muscle cells - role of receptor tyrosine kinase transactivation, Can. J. Physiol. Pharmacol. 81, l59-l67 (2003).
  108. S.L. Lee, W.W. Wang, G.A. Finlay, B.L. Fanburg, Serotonin stimulates MAP kinase activity through the formation of superoxide anion, Am. J. Physiol. Lung Cell Mol. Physiol. 277, L282-L29l (l999).
  109. K.M. Lounsbury, Q. Hu, R.C. Ziegelstein, Calcium signaling and oxidant stress in the vasculature, Free Radic. Biol. Med. 28(9), l362-l369 (2000).
  110. G. Ermak, K.J.A. Davies, Calcium and oxidative stress: from cell signaling to cell death, Mol. Immunol. 38, 7l3-72l (200l).
  111. Y.J. Gao, R.M. Lee, Hydrogen peroxide induces a greater contraction in mesenteric arteries of spontaneously hypertensive rats through thromboxane A(2) production, Br. J. Pharmacol. 134(8), l639-l646 (200l).
  112. S. Rajagopalan, X.P. Meng, S. Ramasamy, D.G. Harrison, Z.S. Galis, Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro, J. Clin. Invest. 98, 2572-2579 (l996).
  113. D.N. Muller, R. Dechend, E.M.A. Mervaala, J.K. Park, F. Schmidt, A. Fiebeler, et al., NFkB inhibition ameliorates angiotensin II-induced inflammatory damage in rats, Hypertension 35, l93-20l (2000).
  114. M. Suematsu, H. Suzuki, F.A. Delano, G.W. Schmid-Schonbein, The inflammatory aspect of the microcirculation in hypertension: oxidative stress, leukocytes/endothelial interaction, apoptosis, Microcirculation 9(4), 259-276 (2002).
  115. F.C. Luft, Mechanisms and cardiovascular damage in hypertension, Hypertension 37, 594-598 (200l).
  116. B.M. List, B. Klosch, C. Volker, A.C. Gorren, W.C. Sessa, E.R. Werner, W.R. Kukovetz, K. Schmidt, B. Mayer, Characterization of bovine endothelial nitric oxide synthase as a homodimer with down-regulated uncoupled NADPH oxidase activity: tetrahydrobiopterin binding kinetics and role of haem in dimerization, Biochem. J. 323 (Pt l), l59-l65 (l997).
  117. M.J. Somers, D.G. Harrison, Reactive oxygen species and the control of vasomotor tone, Curr. Hypertens. Rep. 1, l02-l08 (l999).
  118. M. Tschudi, S. Mesaros, T.F. Luscher, T. Malinski, Direct in situ measurement of nitric oxide in mesenteric reistance arteries: increased decomposition by superoxide in hypertension, Hypertension 27, 32-35 (l996).
  119. C. Szabo, Multiple pathways of peroxynitrite cytotoxicity, Toxicol. Lett. 140, l05-ll2 (2003).
  120. R.W. Alexander, Hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: a new perspective, Hypertension 25, 155-161 (1995).
  121. B. Kristal, R. Shurta-Swirrski, J. Chezar, Participation of peripheral polymorphonuclear leukocytes in the oxidative stress and inflammation in patiemnts with essential hypertension, Am. J. Hypertens. 11, 921-928 (1998).
  122. W.J. Welch, C.S. Wilcox, AT1 receptor antagonist combats oxidative stress and restores nitric oxide signaling in the SHR, Kidney Int. 59, 1257-1263 (2001).
  123. G. Zalba, F.J. Beaumont, G. San Jose, A. Fortuno, M.A. Fortuno, J.C. Etayo, J. Diez, Vascular NADH/NADPH oxidase is involved in enhanced superoxide production in spontaneously hypertensive rats, Hypertension 35(5), 1055-1061 (2000).
  124. G. Zalba, G. San Jose, F.J. Beaumont, M.A. Fortuno, A. Fortuno, J. Diez, Polymorphisms and promoter overactivity of the p22(phox) gene in vascular smooth muscle cells from spontaneously hypertensive rats, Circ. Res. 88(2), 217-222 (2001).
  125. T.J. Guzik, N.E. West, E. Black, D. McDonald, C. Ratnatunga, R. Pillai, K.M. Chanon, Functional effect of the C242T polymorphism in the NAD(P)H oxidase p22ph<" gene on vascular superoxide production in atherosclerosis, Circulation 102, 1744-1747 (2000).
  126. T. Chabrashvili, A. Tojo, M.L. Onozato, C. Kitiyakara, M.T. Quinn, T. Fujita, W.J. Welch, C.S. Wilcox, Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney, Hypertension 39(2), 269-274 (2002).
  127. C.A. Hamilton, M.J. Brosnan, M. McIntyre, D. Graham, A.F. Dominiczak, Superoxide excess in hypertension and aging: a common cause of endothelial dysfunction, Hypertension 37(2), 529-534 (2001).
  128. M.J. Brosnan, C.A. Hamilton, D. Graham, C.A. Lygate, E. Jardine, A.F. Dominiczak, Irbesartan lowers superoxide levels and increases nitric oxide bioavailability in blood vessels from spontaneously hypertensive stroke-prone rats, J. Hypertens. 20(2), 281-286 (2002).
  129. H.J. Hong, G. Hsiao, T.H. Cheng, M.H. Yen, Supplemention with tetrahydrobiopterin suppresses the development of hypertension in spontaneously hypertensive rats, Hypertension 38(5), 1044-1048 (2001).
  130. J.B. Laursen, S. Rajagopalan, Z. Galis, M. Tarpey, B.A. Freeman, D.G. Harrison, Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension, Circulation 95, 588-593 (1997).
  131. B. Rodriguez-Iturbe, C.D. Zhan, Y. Quiroz, R.K. Sindhu, N.D. Vaziri, Antioxidant-rich diet relieves hypertension and reduces renal immune infiltration in spontaneously hypertensive rats, Hypertension 41(2), 341-346 (2003).
  132. A. Tojo, M.L. Onozato, N. Kobayashi, A. Goto, H. Matsuoka, T. Fujita, Angiotensin II and oxidative stress in Dahl Salt-sensitive rat with heart failure, Hypertension 40(6), 834-839 (2002).
  133. Y. Ding, H.C. Gonick, N.D. Vaziri, K. Liang, L. Wei, Lead-induced hypertension. III. Increased hydroxyl radical production. Am. J. Hypertens. 14, 169-173 (2001).
  134. A.D. Dobrian, M.J. Davies, S.D. Schriver, T.J. Lauterio, R.L. Prewitt, Oxidative stress in a rat model of obesity-induced hypertension, Hypertension 37, 554-560 (2001).
  135. R. Wu, E. Millette, L. Wu, J. de Champlain, Enhanced superoxide anion formation in vascular tissues from spontaneously hypertensive and desoxycorticosterone acetate-salt hypertensive rats, J. Hypertens. 19(4), 741-748 (2001).
  136. A. Virdis, M. Fritsch Neves, F. Amiri, E.Viel, R.M. Touyz, E.L. Schiffrin, Spironolactone improves angiotensin-induced vascular changes and oxidative stress, Hypertension 40(4), 504-510 (2002).
  137. H. Girouard, C. Chulak, M. LeJossec, D. Lamontagne, J. de Champlain, Chronic antioxidant treatment improves sympathetic function and beta-adrenergic pathway in the SHR, J. Hypertens. 21(10), 179-188 (2003).
  138. J.F. Reckelhoff, J.C. Romero, Role of oxidative stress in angiotensin-induced hypertension, Am. J. Physiol. Regul. Integr. Comp. Physiol. 284(4), R893-R912 (2003).
  139. C.J. Wallwork, D.A. Parks, G.W. Schmid-Schonbein, Xanthine oxidase activity in the dex-amethasone-induced hypertensive rat, Microvasc. Res. 66(1), 30-37 (2003).
  140. C.S. Schnackenberg, Oxygen radicals in cardiovascular-renal disease, Curr. Opin. Pharmacol. 2, 121-125 (2002).
  141. J.M. Frenoux, B. Noirot, E.D. Prost, S. Madani, J.P. Blond, J.L. Belleville, J.L. Prost, Very high alpha-tocopherol diet diminishes oxidative stress and hypercoagulation in hypertensive rats but not in normotensive rats, Med. Sci. Monit. 8(10), BR401-BR407 (2002).
  142. J.B. Park, R.M. Touyz, X. Chen, E.L. Schiffrin, Chronic treatment with a superoxide dismutase mimetic prevents vascular remodeling and progression of hypertension in salt-loaded stroke-prone spontaneously hypertensive rats, Am. J. Hypertens. 15, 78-84 (2002).
  143. R.M. Touyz, Oxidative stress and vascular damage in hypertension, Curr. Hypertens. Rep. 2, 98-105 (2000).
  144. P. Minuz, P. Patrignani, S. Gaino, M. Degan, L. Menapace, R. Tommasoli, et al., Increased oxidative stress and platelet activation in patients with hypertension and renovascular disease, Circulation 106, 2800-2805 (2002).
  145. S. Sagar, I.J. Kallo, N. Kaul, N.K. Ganguly, B.K. Sharma, Oxygen free radicals in essential hypertension, Mol. Cell Biochem. 111, 103-108 (1992).
  146. M.P. Stojiljkovic, H.F. Lopes, D. Zhang, J.D. Morrow, T.L. Goodfriend, B.M. Egan, Increasing plasma fatty acids elevates F2-isoprostanes in humans: implications for the cardiovascular risk factor cluster, J. Hypertens. 20(6), 1215-1221 (2002).
  147. G.Y. Lip, E. Edmunds, S.L. Nuttall, M.J. Landray, A.D. Blann, D.G. Beevers, Oxidative stress in malignant and non-malignant phase hypertension, J. Hum. Hypertens. 16(5), 333-336 (2002).
  148. V.M. Lee, P.A. Quinn, S.C. Jennings, L.L. Ng, Neutrophil activation and production of reactive oxygen species in pre-eclampsia, J. Hypertens. 21(2), 395-402 (2003).
  149. J.L. Cracowski, J.P. Baguet, O. Ormezzano, J. Bessard, F. Stanke-Labesque, G. Bessard, J.M. Mallion, Lipid peroxidation is not increased in patients with untreated mild-to-moderate hypertension, Hypertension 41(2), 286-288 (2003).
  150. R.M. Touyz, E.L. Schiffrin, Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients: role of phospholipase D-depend-ent NAD(P)H oxidase-sensitive pathways, J. Hypertens. 19(7), 1245-1254 (2001).
  151. L. Ghiadoni, A. Magagna, D. Versari, I. Kardasz, Y. Huang, S. Taddei, A. Salvetti, Different effect of antihypertensive drugs on conduit artery endothelial function, Hypertension 41(6), 1281-1286 (2003).
  152. V. Schachinger, M.B. Britten, S. Dimmeler, A.M. Zeiher, NADH/NADPH oxidase p22 phox gene polymorphism is associated with improved coronary endothelial vasodilator function, Eur. Heart J. 22(1), 96-101 (2001).
  153. A. Gardemann, P. Mages, N. Katz, H. Tillmanns, W. Haberbosch, The p22 phox A640G gene polymorphism but not the C242T gene variation is associated with coronary heart disease in younger individuals, Atherosclerosis 145(2), 315-323 (1999).
  154. F.E. Rey, P.J. Pagano, The reactive adventitia: fibroblast oxidase in vascular function. Arterioscler. Thromb. Vasc. Biol. 22(12), 1962-1971 (2002).
  155. A.A. Brown, F.B. Hu, Dietary modulation of endothelial function: implications for cardiovascular disease, Am. J. Clin. Nutr. 73, 673-686 (2001).
  156. A. Shihabi, W.-G. Li, F.J. Miller, N.L. Weintraub, Antioxidant therapy for atherosclerotic vascular disease: the promise and the pitfalls, Am. J. Physiol. 282, H797-H802 (2002).
  157. D. Salvemini, S. Cuzzocrea, Therapeutic potential of superoxide dismutase mimetics as therapeutic agents in critical care medicine, Crit. Care Med. 31(1), S29-S38 (2003).
  158. D. Digiesi, M. Lenuzza, G. Digiese, Prospects for the use of antioxidant therapy in hypertension, Ann. Ital. Med. Int. 16(20), 93-100 (2001).
  159. M.J. Stampfer, C.H. Hennekens, J.E. Manson, G.A. Colditz, B. Rosner, W.C. Willett, Vitamin E consumption and the risk of coronary heart disease in women. N. Engl. J. Med, 328(20), 1444-1449 (1993).
  160. E.B. Rimm, M.J. Stampfer, A. Ascherio, E. Giovannucci, G.A. Colditz, W.C. Willett, Vitamin E consumption and the risk of coronary heart disease in men, N. Engl. J. Med. 328(20), 1450-1456 (1993).
  161. L.H. Kushi, A.R. Folsom, R.J. Prineas, P.J. Mink, Y. Wu, R.M. Bostick, Dietary antioxidant vitamins and death from coronary heart disease in postmenopausal women, N. Engl. J. Med. 334(18), 1156-1162 (1996).
  162. K.-T. Khaw, S. Bingham, A. Welch, R. Luben, N. Wareham, S. Oakes, et al., Relation between plasma ascorbic acid and mortality in men and women in EPIC-Norfolk prospective study: a prospective population study, Lancet 357, 657-663 (2001).
  163. J. Chen, J. He, L. Hamm, V. Batuman, P.K. Whelton, Serum antioxidant vitamins and blood pressure in the United States population, Hypertension 40(60), 810-816 (2002).
  164. N.G. Stephens, A. Parsons, P.M. Schofield, F. Kelly, K. Cheeseman, M.J. Mitchinson, Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS), Lancet 347(9004), 781-786 (1996).
  165. J. Virtamo, J.M. Rapola, S. Ripatti, O.P. Heinonen, P.R. Taylor, D. Albanes, J.K. Huttunen, Effect of vitamin E and beta carotene on the incidence of primary nonfatal myocardial infarction and fatal coronary heart disease, Arch. Intern. Med. 158(6), 668-675 (1998).
  166. GISSI-Prevenzione Investigators, Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial, Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico, Lancet 354(9177), 447-455 (1999).
  167. HOPE Investigators, Vitamin E supplementation and cardiovascular events in high risk patients, N. Engl. J. Med. 342, 154-160 (2000).
  168. MRC/BHF Heart protection study of antioxidant vitamin supplementation in 20 536 high-risk individuals: a randomized placebo-controlled trial, Lancet 360, 23-33 (2002)
  169. G. de Gaetano Collaborative Group of the Primary Prevention Project, Low-dose aspirin and vitamin E in people at cardiovascular risk: a randomised trial in general practice, Collaborative Group of the Primary Prevention Project, Lancet 357(9250), 89-95 (2001).
  170. D.P. Vivekananthan, M.S. Penn, S.K. Sapp, A. Hsu, E.J. Topol, Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials, Lancet 361(9374), 2017-2023 (2003).
  171. S.J. Duffy, N. Gokce, M. Holbrook, A. Huang, B. Frei, J.F. Keaney, J.A. Vita, Treatment of hypertension with ascorbic acid, Lancet 354, 2048-2049 (1999).
  172. M.D. Fotheby, J.C. Williams, L.A. Forster, P. Craner, G.A. Ferns Effect of vitamin C on ambulatory blood pressure and plasma lipids in older patients, J. Hypertens. 18, 411-415 (2000).
  173. B. Mullan, I.S. Young, H. Fee, D.R. McCance, Ascorbic acid reduces blood pressure and arterial stiffness in type 2 diabetes. Hypertension 40, 804-809 (2002).
  174. M. Boshtam, M. Rafiei, K. Sadeghi, N. Sarraf-Zadegan, Vitamin E can reduce blood pressure in mild hypertensives, Int. J. Vitam. Nutr. Res. 72(5), 309-314 (2002).
  175. H.F. Galley, J. Thornton, P.D. Howdle, B.E. Walker, N.R. Webster. Combination oral antioxidant supplementation reduces blood pressure, Clin. Sci. (Lond) 92(4), 361-365 (1997).
  176. M.Y. Kim, S. Sasaki, S. Sasazuki, S. Okubo, M. Hayashi, S. Tsugane, Lack of long-term effect of vitamin C supplementation on blood pressure, Hypertension 40, 797-803 (2002).
  177. L.C. Chappell, P.T. Seed, A.L. Briley, F.J. Kelly, R. Lee, et al., Effect of antioxidants on the occurrence of pre-eclampsia in women at increased risk: a randomized trial, Lancet 354, 810-815 (1999).
  178. S. Taddei, A. Virdis, L. Ghiadoni, A. Magagna, A. Salvetti, Vitamin C improves endothe-lium-dependent vasodilation by restoring nitric oxide activity in essential hypertension, Circulation 97, 2222-2229 (1998).
  179. L.V. d'Uscio, S. Milstein, D. Rischardson, L. Smith, Z.S. Katusic, Long-term vitamin C treatment increases vascular tetrahydrobiopterin levels and nitric oxide synthase activity, Circ. Res. 92, 88-95 (2003).
  180. S. Maxwell, L. Greig, Antioxidants - a protective role in cardiovascular disease? Expert Opin. Pharmacother. 2(11), 1737-1750 (2001).
  181. R. Wu, D. Lamontagne, J. de Champlain, Antioxidative properties of acetylsalicylic acid on vascular tissues from normotensive and spontaneously hypertensive rats, Circulation 105(3), 387-392 (2002).
  182. D.L. Tribble, Antioxidant consumption and risk of coronary heart disease: emphasis on vitamin C, vitamin E and ß-carotene, A statement for the healthcare professionals from the American Heart Association, Circulation 99, 591-595 (1999).
  183. A. Carr, B. Frei, The role of natural antioxidants in preserving the biological activity of endothelium-derived nitric oxide, Free Rad. Biol. Med. 28, 1806-1814 (2000).
  184. F.M. Sacks, L.P. Svetkey, W.M. Vollmer, L.J. Appel, G.A. Bray, D. Harsha, E. Obarzanek, P.R. Conlin, E.R. Miller III, D.G. Simons-Morton, N. Karanja, P.H. Lin, DASH-Sodium Collaborative Research Group. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group, N. Engl. J. Med. 344(1), 3-10 (2001).
  185. J.H. John, S. Ziebland, P. Yudkin, L.S. Roe, H.A.W. Neil, Effects of fruit and vegetable consumption on plasma antioxidant concentrations and blood pressure: a randomized controlled trial, Lancet 359, 1969-1973 (2002).
  186. Schiffrin EL, Touyz RM. Multiple actions of angiotensin II in hypertension: benefits of ATj receptor blockade, J. Am. Coll. Cardiol. 42(5), 911-913 (2003).
Blood Pressure Health

Blood Pressure Health

Your heart pumps blood throughout your body using a network of tubing called arteries and capillaries which return the blood back to your heart via your veins. Blood pressure is the force of the blood pushing against the walls of your arteries as your heart beats.Learn more...

Get My Free Ebook


Post a comment