References

Baankries R, Exterkate FA. Characterisation of a peptidase from Lactococcus lactis subsp. cremoris HP that hydrolyzes di- and tripeptides containing proline or hydrophobic residues as the aminoterminal amino acid. System Appl Microbiol 14:317, 1991. Baankreis R, van Schalkwijk S, Alting AC, Exterkate FA. The occurrence of two intracel-

lular oligoendopeptidases in Lactococcus lactis and their significance for peptide conversion in cheese. Appl Microbiol Biotechnol 44:386, 1995.

Bandell M, Lhotte ME, Marty-Teysset C, Veyrat A, Prevost H, Dartois V, Divies C, Kon-ings WN, Lolkema JS. Mechanisms of the citrate transporters in carbohydrate and citrate cometabolism in Lactococcus and Leuconostoc species. Appl Environ Microbiol 64:1594, 1998.

Benateya A, Bracquart P, Linden G. Galactose-fermenting mutants of Streptoccous ther-mophilus. Can J Microbiol 37:136, 1991.

Benson KH, Godon, J-J, Renault P, Griffin HG, Gasson MJ. Effect of invBN-encoded a-acetolactate synthase expression on diacetyl production in Lactococcus lactis. Appl Microbiol Biotechnol 45:107, 1996.

Bolotin A, Mauger S, Malarme K, Ehrlich SD, Sorokin A. Low-redundancy sequencing of the entire Lactococcus lactis IL 1403 genome. Antonie van Leeuwenhoek 76: 27, 1999.

Boothe M, Jennings PV, Fhaolain IN, O'Quinn G. Prolidase activity of Lactococcus lactis subsp. cremoris AM2: partial purification and characterization. J Dairy Sci 57:245, 1990.

Boumerdassi H, Desmazeaud M, Monnet C, Boquien CY, Corrieu G. Improvement of diacetyl production by Lactococcus lactis subsp. lactis CNRZ 483 through oxygen control. J Dairy Sci 79:775, 1996.

Christensen JE, Dudley EG, Pederson JA, Steele JL. Peptidases and amino acid catabolism in lactic acid bacteria. Antonie van Leeuwenhoek 76:217, 1999.

Cocaign-Bousquet M, Garrigues C, Loubiere P, Lindley NC. Physiology of pyruvate metabolism in Lactococcus lactis. Antonie van Leeuwenhoek 70:253, 1996.

Detmers FJM, Kunji ERS, Lanfermeijer FC, Poolman B, Konings WN. Kinetics and specificity of peptide uptake by the oligopeptide transport system of Lactococcus lactis. Biochemistry 37:16671, 1998.

de Felipe FL, Kleerebezem M, de Vos WM, Hugenholtz J. Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J Bacteriol 180:3804, 1998.

de Ruyter PGGA, Kuipers OP, Meijer WC, de Vos VM. Food-grade controlled lysis of Lactococcus lactis for accelerated cheese ripening. Nat Biotechnol 15:976, 1998.

de Vos, WM. Metabolic engineering of sugar catabolism in lactic acid bacteria. Antonie van Leeuwenhoek 70:223, 1996.

de Vos WM, Boerrigter IJ, van Rooyen RJ, Reiche B, Hengstenberg W. Characterization of the lactose-specific enzymes of the phosphotransferase system in Lactococcus lactis. J Biol Chem 265:22554, 1990.

Foucaud C, Kunji ERS, Hagting A, Richard J, Konings WN, Desmazeaud M, Poolman B. Specificity of peptide transport systems in Lactococcus lactis: evidence for a third system which transports hydrophobic di- and tripeptides. J Bacteriol 177:4652, 1995.

Fox PF, Law J. Enzymology of cheese ripening. Food Biotechnol 5:239, 1991.

Fox PF, Wallace JM. Formation of flavor compounds in cheese. Adv Appl Microbiol 45: 17, 1997.

Gagnaire V, Molle D, S0rhaug T, Leionil J. Peptidases of dairy propionic acid bacteria. Lait 79:43, 1999.

Garrigues C, Loubiere P, Lindley NC, Cocaign-Bousquet M. Control of shift from homo-lactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J Bacteriol 179:5282, 1997.

Gosalbes MJ, Monedero V, Alpert C.-A., Perez-Martinez G. Establishing a model to study the regulation of the lactose operon in Lactobacillus casei. FEMS Microbiol Lett 148:83, 1997.

Gosalbes MJ, Monedero V, Perez-Martinez G. Elements involved in catabolite repression and substrate induction of the lactose operon in Lactobacillus casei. J Bacteriol 181:3928, 1999.

Gripon JC. Mould-ripened cheeses. In: Fox PF, ed. Cheese: Chemistry, Physics and Microbiology. Vol 2. Major Cheese Varieties. London: Elsevier, 1987, p 121.

Grossiord B, Vaughan EE, Luesink E, de Vos WM. Genetics of galactose utilisation via the Leloir pathway in lactic acid bacteria. Lait 78:77, 1998.

Hugenholtz J, Kleerebezem M. Metabolic engineering of lactic acid bacteria: overview of the approaches and results of pathway rerouting involved in food fermentations. Curr Opinion Biotechnol 10:492, 1999.

Hutkins RW, Ponne C. Lactose uptake driven by galactose efflux in Streptococcus ther-mophilus: evidence for a galactose-lactose antiporter. Appl Environ Microbiol 57: 941, 1991.

Juillard V, Laan H, Kunji ERS, Jeronimus-Stratingh CM, Bruins AP, Konings WN. The extracellular P-type proteinase of Lactococcus lactis hydrolyzes P-casein into more than one hundred different olipeptides. J Bacteriol 177:3472, 1995.

Kunji ERS, Hagting A, de Vried CJ, Juillard V, Haandrikman AJ, Poolman B, Konings WN. Transport of P-casein-derived peptides by the oligopeptide transport system is a crucial step in the proteolytic pathway of Lactococcus lactis. J Biol Chem 270: 1569, 1995.

Kunji ERS, Mierau I, Hagting A, Poolman B, Konings WN. The proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek 70:187, 1996.

Kunji ERS, Fang G, Jeronimus-Stratingh CM, Bruins AP, Poolman B, Konings WN. Reconstruction of the proteolytic pathway for use of P-casein by Lactococcus lactis. Mol Microbiol 27:1107, 1998.

Langsrud T, S0rhaug T, Vegarud GE. Protein degradation and amino acid metabolism by propionibacteria. Lait 75:325, 1995.

Law J, Fitzgerald GF, Uniacke-Lowe T, Daly C, Fox PF. The contribution of lactococcal starter proteinases to proteolysis in Cheddar cheese. J Dairy Sci 76:2455, 1993.

Looijesteijn PJ, Boels IC, Kleerebezem M, Hugenholtz J. Regulation of exopolysaccharide production by Lactococcus lactis subsp. cremoris by the sugar source. Appl Environ Microbiol 65:5003, 1999.

Lopez P, Drider D, Garcia-Quintans N, Corrales MA, Magni C, Martin M, de Mendoza D. Regulation of expression of the Lactococcus lactis subsp. lactis biovar diacetylactis citrate transport system. Lait 78:11, 1998.

Luesink EJ, Kuipers OP, de Vos WM. Regulation of the carbohydrate metabolism in Lac-tococcus lactis and other lactic acid bacteria. Lait 78:69, 1998a.

Luesink EJ, van Herpen REMA, Grossiord BP, Kuipers OP, de Vos WM. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Mol Microbiol 30:789, 1998b.

Luesink EJ, Beumer CM, Kuipers OP, de Vos WM. Molecular characterization of the Lactococcus lactis ptsHl operon and analysis of the regulatory role of HPr. J Bacte-riol 181:764, 1999.

Mars I, Monnett V. An aminopeptidase P from Lactococcus lactis with original specificity. Biochim Biophys Acta 1243:209, 1995.

Marth EH, Yousef AE. Fungi and dairy products. In: Arora DK, Mukerji KG, Marth EH, eds. Handbook of Applied Mycology. Vol 3. Foods and Feeds. New York: Marcel Dekker, 1991, p 375.

Martin M, Corrales MA, de Mendoza D, Lopez P, Magni C. Cloning and molecular characterization of the citrate utilization citMCDEFGRP cluster of Leuconostoc parames-enteroides. FEMS Microbiol Lett 174:231, 1999.

Mayo B, Kok J, Venema K, Bockelman W, Teuber M, Reinke H, Venema G. Molecular cloning and sequence analysis of the X-propyl dipeptidyl aminopeptidase gene from Lactococcus lactis susp. cremoris. Appl Environ Microbiol 57:38, 1991.

McGarry A, Law J, Coffey A, Daly C, Fox PF, Fitzgerald GF. Effect of genetically modifying the lactococcal proteolytic system on ripening and flavor development in Cheddar cheese. Appl Environ Microbiol 60:4226, 1994.

McKay LL, Baldwin KA. Simultaneous loss of proteinase- and lactose-utilizing enzyme activities in Streptococcus lactis and reversal by transduction. Appl Microbiol 28: 342, 1974.

McKay LL, Walter RA, Sandine WE, Elliker PR. Involvement of phosphoenolpyruvate in lactose utilization by group N streptococci. J Bacteriol 99:603, 1969.

Mierau I, Tan PST, Haandrikman AJ, Kok J, Leenhouts KJ, Konings WN, Venema G. Cloning and sequencing of the gene for a lactococcal endopeptidase, an enzyme with sequence similarity to mammalian enkephalinase. J Bacteriol 175:2087, 1993.

Mierau I, Kunji ERS, Leenhouts KJ, Hellendoorn MA, Haandrikman AJ, Poolman B, Konings WN, Venema G, Kok J. Multiple peptidase mutants of Lactococcus lactis are severely impaired in their ability to grow in milk. J Bacteriol 178:2794, 1996.

Mierau I, Kunji ERS, Venema G, Kok J. Casein and peptide degradation in lactic acid bacteria. Biotechnol Genet Eng Rev 14:279, 1997.

Monnet C, Schmitt P, Divies C. Development and use of a screening procedure for production of a-acetolactate by Lactococcus lactis subsp. lactis biovar diacetylactis strains. Appl Environ Microbiol 63:793, 1997.

Monnet V, Nardi M, Chopin A, Chopin M.-C., Gripon J.-C. Biochemical and genetic characterization of PepF, an oligopeptidase from Lactococcus lactis. J Biol Chem 269:32070, 1994.

Mustapha A, Hutkins RW, Zirnstein GW. Cloning and characterization of the galactoki-nase gene from Streptococcus thermophilus. J Dairy Sci 78:989, 1995.

0stlie H, Floberhagen V, Reinbold G, Hammond EG, Vegarud G, Langsrud T. Autolysis of dairy propionibacteria: growth studies, peptidase activities, and proline production. J Dairy Sci 78:1224, 1995.

Piveteau P. Metabolism of lactate and sugars by dairy propionibacteria: a review. Lait 79: 23, 1999.

Poolman B, Royer TJ, Mainzer SE, Schmidt BF. Lactose transport system of Streptococcus thermophilus: a hybrid protein with homology to the melibiose carrier and enzyme III of phosphoenolpyruvate-dependent phosphotransferase systems. J Bacteriol 171: 244, 1989.

Poolman B, Royer TJ, Mainzer SE, Schmidt BF. Carbohydrate utilization in Streptococcus thermophilus: characterization of the genes for aldose 1-epimerase (mutarotase) and UDPglucose 4-epimerase. J Bacteriol 172:4037, 1990.

Rattray FP, Fox PF. Aspects of enzymology and biochemical properties of Brevibacterium linens relevant to cheese ripening: a review. J Dairy Sci 82:891, 1999.

Saier MH Jr, Chauvaux S, Deutscher J, Reizer J, Ye J-J. Protein phosphorylation and regulation of carbon metabolism in gram-negative versus gram-positive bacteria. Trends Biochem Sci 20:267, 1995.

Savijoki K, Palva A. Purification and molecular characterization of a tripeptidase (PepT) from Lactobacillus helveticus. Appl Environ Microbiol 66:794, 2000.

Snoep JL, Teixeira de Mattos TMJ, Starrenburg MJC, Hugenholtz J. Isolation, characterization, and physiological role of pyruvate dehydrogenase complex and a-acetolac-tate synthase of Lactococcus lactis subsp. lactis bv. diacetylactis. J Bacteriol 174: 4838, 1992.

Steele JL. Genetics and metabolism of starter cultures. In: Marth EH, Steele JL, eds. Applied Dairy Microbiology. New York: Marcel Dekker, 1998, p 173.

Swindell SR, Benson KH, Griffin HG, Renault P, Ehrlich SD, Gasson MJ. Genetic manipulation of the pathway for diacetyl metabolism in Lactococcus lactis. Appl Environ Microbiol 62:2641, 1996.

Tan PST, van Kessel TAJM, van de Veerdonk FLM, Zuurendonk PF, Bruins AP, Konings WN. Degradation and debittering of a tryptic digest from ß-casein by aminopepti-dase N from Lactococcus lactis subsp. cremoris WG2. Appl Environ Microbiol 59: 1430, 1993.

Thomas TD, Crow VL. Selection of galactose-fermenting Streptococcus thermophilus in lactose-limited chemostat cultures. Appl Environ Microbiol 48:186, 1994.

Thompson J. Regulation of sugar transport and metabolism in lactic acid bacteria. FEMS Microbiol Rev 46:221, 1987.

Thompson J, Chassy BM. Intracellular hexose-6-phosphohydrolase from Streptococcus lactis: purification, properties, and function. J Bacteriol 156:70, 1983.

Tynkkynen S, Buist G, Kunji E, Kok J, Poolman B, Venema G, Haandrikman. Genetic and biochemical characterization of the oligopeptide transport system of Lactococ-cus lactis. J Bacteriol 175:7523, 1993.

Urbach G. Contribution of lactic acid bacteria to flavour compound formation in dairy products. Int Dairy J 5:877, 1995.

van Rooijen RJ, de Vos WM. Molecular cloning, transcriptional analysis, and nucleotide sequence of lacR, a gene encoding the repressor of the lactose phosphoransferase system of Lactococcus lactis. J Biol Chem 265:18499, 1990.

Varmanen P, Steele JL, Palva A. Characterization of a prolinase gene and its product, and an adjacent ABC transporter gene from Lactobacillus helveticus. Microbiology 142:809, 1996.

Weimer B, Seefeldt K, Dias B. Sulfur metabolism in bacteria associated with cheese. Antonie van Leeuwenhoek 76:247, 1999.

Yan T-R, Azuma N, Kaminogawa S, and Yamauchi K. Purification and characterization of a novel metallopeptidase from Streptococcus cremoris H61. Eur J Biochem 163: 259, 1987.

Ye JJ, Saier MH Jr. Purification and characterization of a small membrane-associated sugar-phosphate phosphatase that is allosterically activated by HPr(Ser(P)) of the phosphotransferase system in Lactococcus lactis. J Biol Chem 270:16740, 1995a.

Ye JJ, Saier MH Jr. Cooperative binding of lactose and the phosphorylated phosphocarrier protein HPr(Ser-P) to the lactose/H+ symport permease of Lactobacillus brevis. Proc Natl Acad Sci 92:417, 1995b.

Ye JJ, Reizer J, Cui X, Saier MH Jr. Inhibition of the phosphoenolpyruvate:lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr. J Biol Chem 269:11837, 1994.

Was this article helpful?

0 0

Post a comment