References

  1. Beiser DG, Hua SE, Houk JC. Network models of the basal ganglia. Curr Opin Neurobiol 1997;7:185-190.
  2. Ruppin E, Reggia JA, Glanzman D. Understanding brain and cognitive disorders: the computational perspective. Prog Brain Res 1999;121:ix-xv.
  3. Gillies A, Arbuthnott G. Computational models of the basal ganglia. Mov Disord 2000;15:762-770.
  4. Amos A. A computational model of information processing in the frontal cortex and basal ganglia. J Cogn Neurosci 2000;12:505-519.
  5. Lorincz A. Static and dynamic state feedback control model of basal ganglia-thalamocortical loops. Int J Neural Syst 1997;8:339-357.
  6. Wickens JR, Kotter R, Alexander ME. Effects of local connectivity on striatal function: stimulation and analysis of a model. Synapse 1995;20:281-298.
  7. Contreras-Vidal JL, Grossberg S, Bullock D. A neural model of cerebellar learning for arm movement control: cortico-spino-cerebellar dynamics. Learn Mem 1997;3:475-502.
  8. Burnod Y, Grandguillaume P, Otto I, Ferraina S, Johnson PB, Caminiti R. Visuomotor transformations underlying arm movements toward visual targets: a neural network model of cerebral cortical operations. J Neurosci 1992;12:1435-1453.
  9. Bullock D, Grossberg S, Guenther FH. A self-organizing neural model of motor equivalent reaching and tool use by a multijoint arm. J Cogn Neurosci 1993;5:408-435.
  10. Tagamets MA, Horwitz B. Interpreting PET and fMRI measures of functional neural activity: the effects of synaptic inhibition on cortical activation in human imaging studies. Brain Res Bull 2001;54:267-273.
  11. Horwitz B, Poeppel D. How can EEG/MEG and fMRI/PET data be combined? Hum Brain Mapp 2002;17:1-3.
  12. Contreras-Vidal JL, Poluha P, Teulings HL, Stelmach GE. Neural dynamics of short and medium-term motor control effects of levodopa therapy in Parkinson's disease. Artif Int Med 1998;13:57-79.
  13. Bower JM. Modeling the nervous system. TINS 1992;15:411-412.
  14. Schultz W, Dayan P, Montague R. A neural substrate of prediction and reward. Science 1997;275:1593-1599.
  15. Contreras-Vidal JL, Schultz W. A predictive reinforcement model of dopamine neurons for learning approach behavior. J Comput Neurosci 1999;6:191-214.
  16. Nakahara H, Doya K, Hikosaka O. Parallel cortico-basal ganglia mechanisms for acquisition and execution of visuomotor sequences—A computational approach. J Cogn Neurosci 2001;13:626-647.
  17. Suri R, Schultz W. Learning of sequential movements by neural network model with dopamine-like reinforcement signal. Exp Brain Res 1998;121:350-354.
  18. Contreras-Vidal, JL. The gating functions of the basal ganglia in movement control. In: JA Reggia, E Ruppin, DL Glanzman (eds.). Progress in Brain Research. Disorders of Brain, Behavior and Cognition: the Neurocomputational Perspective. Amsterdam: Elsevier, 1999:261-276.
  19. Humphries MD, Gurney KN. The role of intra-thalamic and thalamocortical circuits in action selection. Network 2002;13:131-156.
  20. Gurney K, Prescott TJ, Redgrave P. A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biol Cybern 2001;84:411-423.
  21. Beiser D, Houk J. Model of cortical-basal ganglia ganglionic processing: encoding the serial order of sensory events. J Neurophysiol 1998;79:3168-3188.
  22. Fukai T. Sequence generation in arbitrary temporal patterns from theta-nested gamma oscillations: a model of the basal ganglia-thalamo-cortical loops. Neural Netw 1999;12:975-987.
  23. Berns GS, Sejnowski TJ. A computational model of how the basal ganglia produce sequences. J Cogn Neurosci 1998;10:108-121.
  24. Contreras-Vidal JL, Stelmach GE. A neural model of basal ganglia-thalamocortical relations in normal and Parkinsonian movement. Biol Cybern 1995;73:467-476.
  25. Connolly CI, Burns JB, Jog MS. A dynamical-systems model for Parkinson's disease. Biol Cybern 2000;83:47-59.
  26. Suri RE, Albani C, Glattfelder AH. A dynamic model of motor basal ganglia functions. Biol Cybern 1997;76:451-458.
  27. Borrett DS, Yeap TH, Kwan HC. Neural networks and Parkinson's disease. Can J Neurol Sci 1993;20:107-113.
  28. Litvan I. Recent advances in atypical parkinsonian disorders. Curr Opin Neurol 1999;12:441-446.
  29. Yekhlef F, Ballan G, Macia F, Delmer O, Sourgen C, Tison F. Routine MRI for the differential diagnosis of Parkinson's disease, MSA, PSP, and CBD. J Neural Transm 2003;110:151-169.
  30. Schrag A, Kingsley D, Phatouros C, et al. Clinical usefulness of magnetic resonance imaging in multiple system atrophy. J Neurol Neurosurg Psychiatry 1998;65:65-71.
  31. Schrag A, Good CD, Miszkiel K, et al. Differentiation of atypical parkinsonian syndromes with routine MRI. Neurology 2000;54:697-702.
  32. Kraft E, Schwarz J, Trenkwalder C, Vogl T, Pfluger T, Oertel WH. The combination of hypointense and hyperintense signal changes on T2-weighted magnetic resonance maging sequences: a specific marker of multiple system atrophy? Arch Neurol 1999;56:225-228.
  33. Savoiardo M, Strada L, Girotti F, Zimmerman RA, Grisoli M, Testa D, Petrillo R. Olivopontocerebellar atrophy: MR diagnosis and relationship to multisystem atrophy. Radiology 1990;174:693-669.
  34. Savoiardo M, Grisoli M, Girotti F, Testa D, Caraceni T. MRI in sporadic olivopontocerebellar atrophy and striatonigral degeneration. Neurology 1997;48:790-792.
  35. Horimoto Y, Aiba I, Yasuda T, et al.Cerebral atrophy in multiple system atrophy by MRI. J Neurol Sci 2000;173:109-112.
  36. Fahn S, Green PE, Ford B, Bressman SB. Handbook of Movement Disorders. London: Blackwell Science, 1997.
  37. Leiguarda RC, Marsden CD. Limb apraxias: higher-order disorders of sensorimotor integration. Brain 2000;123:860-79.
  38. Leiguarda R, Merello M, Balej J, Starkstein S, Nogues M, Marsden CD. Disruption of spatial organization and interjoint coordination in Parkinson's disease, progressive supranuclear palsy, and multiple system atrophy. Mov Disord 2000;15:627-640.
  39. Litvan I. Progressive supranuclear palsy and corticobasal degeneration. Baillieres Clin Neurol 1997;6:167-185.
  40. Roy EA. Apraxia in diseases of the basal ganglia. Mov Disord 2000;15:598-600.
  41. Bullock D, Grossberg S. Neural dynamics of planned arm movements: emergent invariants and speed-accuracy properties during trajectory formation. Psychol Rev 1988;95:49-90.
  42. Anderson ME, Horak FB. Influence of the globus pallidus on arm movements in monkeys. III. Timing of movement-related information. J Neurophysiol 1985;54:433-448.
  43. Brotchie P, Iansek R, Horne MK. Motor function of the monkey globus pallidus. 1. Neuronal discharge and parameters of movement. Brain. 1991;114:1667-1683.
  44. Cheruel F, Dormont JF, Amalric M, Schmied A, Farin D. The role of putamen and pallidum in motor initiation in the cat. I. Timing of movement-related single-unit activity. Exp Brain Res 1994;100:250-266.
  45. Georgopoulos AP, DeLong MR, Crutcher MD. Relations between parameters of step-tracking movements and single cell discharge in the globus pallidus and subthalamic nucleus of the behaving monkey. J Neurosci 1983;3:1586-1598.
  46. Mink JW, Thach WT. Basal ganglia motor control. I. Nonexclusive relation of pallidal discharge to five movement modes. J Neurophysiol 1991;65:273-300.
  47. Nambu A, Yoshida S, Jinnai K. Movement-related activity of thalamic neurons with input from the globus pallidus and projection to the motor cortex in the monkey. Exp Brain Res 1991;84:279-284.
  48. Neafsey EJ, Hull CD, Buchwald NA. Preparation for movement in the cat. II. Unit activity in the basal ganglia and thalamus. Electroencephalogr Clin Neurophysiol 1978;44:714-723.
  49. Turner RS, Anderson ME. Pallidal discharge related to the kinematics of reaching movements in two dimensions. J Neurophysiol 1997;77:1051-1074.
  50. Contreras-Vidal JL, Buch ER. Effects of Parkinson's disease on visuomotor adaptation. Exp Brain Res 2003;150:25-32.
  51. Buch ER, Young S, Contreras-Vidal JL. Visuomotor adaptation in normal aging. Learn Mem 2003;10:55-63.
  52. Inoue K, Kawashima R, Satoh K, et al. A PET study of visuomotor learning under optical rotation. Neuroimage 2000;11:505-516.
  53. Balslev D, Nielsen FA, Frutiger SA, et al. Cluster analysis of activity-time series in motor learning. Hum Brain Mapp 2002;15:135-45.
  54. Klockgether T, Borutta M, Rapp H, Spieker S, Dichgans J. A defect of kinesthesia in Parkinson's disease. Mov Disord 1995;10:460-465.
  55. Rothi LJG, Ochipa C, Heilman KM. A cognitive neuropsychological model of limb praxis. Cogn Neuropsychol 1991;8:443-458.
  56. Hacisalihzade SS, Mansour M, Albani C. Optimization of symptomatic therapy in Parkinson's disease. IEEE Trans Biomed Eng 1989;36:363-372.
  57. Buxbaum LJ. Ideomotor apraxia: A call to Action. Neurocase 2001;7:445-458.
  58. Poizner H, Mack L, Verfaellie M, Rothi LJ, Heilman KM. Three-dimensional computer graphic analysis of apraxia. Neural representations of learned movement. Brain 1990;113:85-101.
  59. Liepmann H. The left hemisphere and action. London, Ontario: University of Western Ontario, 1905.
  60. De Rensi E, Motti F, Nichelli P. Imitating gestures. A quantitative approach to ideomotor apraxia. Arch Neurol 1980;37:6-10.
  61. Foundas AL, Macauley BL, Raymer AM, Maher LM, Heilman KM, Gonzalez Rothi, LJ. Ecological implications of limb apraxia: evidence from mealtime behavior. J Int Neuropsychol Soc 1995;1:62-66.

Was this article helpful?

0 0

Post a comment