## Molarity

Percent concentrations are easy to prepare, but that unit of measurement is inadequate for many purposes. The physiological effect of a chemical depends on how many molecules of it are present in a given volume, not the weight of the chemical. Five percent glucose, for example, contains almost twice as many glucose molecules as the same volume of 5% sucrose (fig. 2.11a). Each solution contains 50 g of sugar per liter, but glucose has a molecular weight (MW) of 180 and sucrose has a MW of 342. Since each molecule of glucose is lighter, 50 g of glucose contains more molecules than 50 g of sucrose.

To produce solutions with a known number of molecules per volume, we must factor in the molecular weight. If we know the MW and weigh out that many grams of the substance, we have a quantity known as its gram molecular weight, or 1 mole. One mole of glucose is 180 g and 1 mole of sucrose is 342 g. Each quantity contains the same number of molecules of the respective sugar—a number known as Avogadro's9 number, 6.023 X 1023. Such a large number is hard to imagine. If each molecule were the size of a pea, 6.023 X 1023 molecules would cover 60 earth-sized planets 3 m (10 ft) deep!

Molarity (M) is the number of moles of solute per liter of solution. A one-molar (1.0 M) solution of glucose contains 180 g/L, and 1.0 M solution of sucrose contains 342 g/L. Both have the same number of solute molecules in a given volume (fig. 2.11fc). Body fluids and laboratory solutions usually are less concentrated than 1 M, so biologists and clinicians more often work with millimolar (mM) and micromolar (^M) concentrations—10~3 and 10~6 M, respectively. 