Protein Structure

Proteins have complex coiled and folded structures that are critically important to the roles they play. Even slight changes in their conformation (three-dimensional shape) can destroy protein function. Protein molecules have three to four levels of complexity, from primary through quaternary structure (fig. 2.24).

Primary structure is the protein's sequence of amino acids. Their order is encoded in the genes (see chapter 4).

Secondary structure is a coiled or folded shape held together by hydrogen bonds between the slightly negative C=O group of one peptide bond and the slightly positive N—H group of another peptide bond some distance away. The most common secondary structures are a springlike shape called the a helix and a pleated, ribbonlike shape, the p sheet (or p-pleated sheet). Many proteins have multiple a-helical and p-pleated regions joined by short segments with a less orderly geometry. A single protein molecule may fold back on itself and have two or more p-pleated regions linked to each other by hydrogen bonds. Separate, parallel protein molecules also may be hydrogen-bonded to each other through their p-pleated regions.

Tertiary24 (TUR-she-air-ee) structure is formed by the further bending and folding of proteins into various globular and fibrous shapes. It results from hydrophobic R groups associating with each other and avoiding water, while the hydrophilic R groups are attracted to the surrounding water. Globular proteins, somewhat resembling a wadded ball of yarn, have a compact tertiary structure well suited for proteins embedded in cell membranes and proteins that must move around freely in the body fluids, such as enzymes and antibodies. Fibrous proteins such as myosin, keratin, and collagen are slender filaments better suited for such roles as muscle contraction and providing strength to skin, hair, and tendons.

The amino acid cysteine (Cys), whose R group is —CH2—SH (see fig. 2.23), often stabilizes a protein's tertiary structure by forming covalent disulfide bridges. When two cysteines align with each other, each can release a hydrogen atom, leaving the sulfur atoms to form a disul-fide (—S—S—) bridge. Disulfide bridges hold separate polypeptide chains together in such molecules as antibodies and insulin (fig. 2.25).

Quaternary25 (QUA-tur-nare-ee) structure is the association of two or more polypeptide chains by noncovalent forces such as ionic bonds and hydrophilic-hydrophobic interactions. It occurs in only some proteins. Hemoglobin, for example, consists of four polypeptides—two identical a chains and two identical, slightly longer p chains (see fig. 2.24).

One of the most important properties of proteins is their ability to change conformation, especially tertiary structure. This can be triggered by such influences as voltage changes on a cell membrane during the action of nerve cells, the binding of a hormone to a protein, or the dissociation of a molecule from a protein. Subtle, reversible changes in conformation are important to processes such as enzyme function, muscle contraction, and the opening and closing of pores in cell membranes. Denaturation is a more drastic conformational change in response to conditions such as extreme heat or pH. It is seen, for example, when you cook an egg and the egg white protein (albumen) turns from clear to opaque. Denaturation is sometimes reversible, but often it permanently destroys protein function.

Conjugated proteins have a non-amino-acid moiety called a prosthetic26 group covalently bound to them. Hemoglobin, for example, not only has the four polypeptide chains described earlier, but each chain also has a complex iron-containing ring called a heme moiety attached to it (see fig. 2.24). Hemoglobin cannot transport oxygen unless this group is present. In glycoproteins, as described earlier, the carbohydrate moiety is a prosthetic group.

Essentials of Human Physiology

Essentials of Human Physiology

This ebook provides an introductory explanation of the workings of the human body, with an effort to draw connections between the body systems and explain their interdependencies. A framework for the book is homeostasis and how the body maintains balance within each system. This is intended as a first introduction to physiology for a college-level course.

Get My Free Ebook

Post a comment