Contents

Contributors xi

1 Rapid Prototyping for Medical Applications 1

Ian Gibson

  1. 1 Overview 1
  2. 2 Workshop on Medical Applications for Reverse Engineering and Rapid Prototyping 2
  3. 3 Purpose of This Chapter (Overview) 3
  4. 4 Background on Rapid Prototyping 3
  5. 5 Stereolithography and Other Resin-type Systems 6
  6. 6 Fused Deposition Modelling and Selective Laser Sintering 7
  7. 7 Droplet/Binder Systems 9
  8. 8 Related Technology: Microsystems and Direct Metal Systems 10
  9. 9 File Preparation 11
  10. 10 Relationship with Other Technologies 12
  11. 11 Disadvantages with RP for Medical Applications 13
  12. 12 Summary 14 Bibliography 14

2 Role of Rapid Digital Manufacture in Planning and Implementation of

Complex Medical Treatments 15

Andrew M. Christensen and Stephen M. Humphries

  1. 1 Introduction 16
  2. 2 Primer on Medical Imaging 16
  3. 3 Surgical Planning 18
  4. 3.1 Virtual planning 18
  5. 3.2 Implementation of the plan 20
  6. 4 RDM in Medicine 22
  7. 4.1 RP-generated anatomical models 22
  8. 4.2 Custom treatment devices with ADM 26
  9. 5 The Future 28
  10. 6 Conclusion 29 References 29

3 Biomodelling 31

P. D'Urso

  1. 1 Introduction 31
  2. 2 Surgical Applications of Real Virtuality 32
  3. 2.1 Cranio-maxillofacial biomodelling 33
  4. 2.1.1 Integration of biomodels with dental castings 34
  5. 2.1.2 Use of biomodels to shape maxillofacial implants 35
  6. 2.1.3 Use of biomodels to prefabricate templates and splints 35
  7. 2.1.4 Use of biomodels in restorative prosthetics 36
  8. 2.2 Use of real virtuality in customized cranio-maxillofacial prosthetics 36
  9. 2.2.1 Computer mirroring techniques for the generation of prostheses 38
  10. 2.2.2 Results of implantation 39
  11. 2.2.3 Advantages of prefabricated customized cranioplastic implants 39
  12. 2.3 Biomodel-guided stereotaxy 39
  13. 2.3.1 Development of stereotaxy 40
  14. 2.3.2 Development of biomodel-guided stereotactic surgery 40
  15. 2.3.3 Biomodel-guided stereotactic surgery with a template and markers 41
  16. 2.3.4 Biomodel-guided stereotactic surgery using the D'Urso frame 42
  17. 2.3.5 Utility of biomodel-guided stereotactic surgery 43
  18. 2.4 Vascular biomodelling 44
  19. 2.4.1 Biomodelling from CTA 44
  20. 2.4.2 Biomodelling from MRA 45
  21. 2.4.3 Clinical applications of vascular biomodels 45
  22. 2.4.4 Vascular biomodelling: technical note 46
  23. 2.5 Skull-base tumour surgery 46
  24. 2.6 Spinal surgery 48
  25. 2.6.1 Spinal biomodel stereotaxy 48
  26. 2.6.2 Technical considerations in spinal biomodelling 50
  27. 2.7 Orthopaedic biomodelling 50
  28. 3 Case Studies 51 References 55

4 Three-dimensional Data Capture and Processing 59

  1. Feng, Y. F. Zhang, Y. F. Wu and Y. S. Wong
  2. 1 Introduction 60
  3. 2 3D Medical Scan Process 61
  4. 2.1 3D scanning 61
  5. 2.1.1 Computed tomography imaging and its applications 61
  6. 2.1.2 Magnetic resonance imaging and its applications 63
  7. 2.1.3 Ultrasound imaging and its applications 64
  8. 2.1.4 3D laser scanning 65
  9. 2.2 3D reconstruction 65
  10. 3 RE and RP in Medical Application 67
  11. 3.1 Proposed method for RP model construction from scanned data 68
  12. 3.2 Reconstruction software 69
  13. 3.3 Accuracy issues 70
  14. 4 Applications of Medical Imaging 71
  15. 5 Case Study 72
  16. 5.1 Case study with CT/MR scanned data 72
  17. 5.2 Case studies for RE and RP 74
  18. 6 Conclusions 76 References 76 Bibliography 76

5 Software for Medical Data Transfer 79

Ellen Dhoore

  1. 1 Introduction 79
  2. 2 Medical Imaging: from Medical Scanner to 3D Model 79
  3. 2.1 Introduction 79
  4. 2.2 Mimics® 80
  5. 2.2.1 Basic functionality of Mimics 80
  6. 2.2.2 Additional modules in Mimics 82
  7. 3 Computer Approach in Dental Implantology 92
  8. 3.1 Introduction 92
  9. 3.2 Virtual 3D planning environment: SimPlant® 92
  10. 3.3 Guide to accurate implant treatment: SurgiGuide® 93
  11. 3.3.1 General concept of SurgiGuide® 93
  12. 3.3.2 Different types of SurgiGuide® 94
  13. 3.3.3 Immediate SmileTM: temporary prosthesis for truly

'immediate' loading 100

5.4 Conclusions 102 Bibliography 103

6 BioBuild Software 105

Robert Thompson, Dr Gian Lorenzetto and Dr Paul D'Urso

  1. 1 Introduction 105
  2. 2 BioBuild Paradigm 109
  3. 2.1 Importing a dataset 110
  4. 2.2 Volume reduction 112
  5. 2.3 Anatomical orientation confirmation 112
  6. 2.4 Volume inspection and intensity thresholding 112
  7. 2.4.1 Intensity thresholding 113
  8. 2.4.2 Display options 114
  9. 2.5 Volume editing 114
  10. 2.5.1 Connectivity options 115
  11. 2.5.2 Volume morphology 115
  12. 2.5.3 Region morphology 116
  13. 2.5.4 Volume algebra 116
  14. 2.5.5 Labels 117
  15. 2.5.6 Volume transformations 117
  16. 2.6 Image processing 118
  17. 2.7 Build orientation optimization 118
  18. 2.8 3D visualization 119
  19. 2.9 RP file generation 119
  20. 3 Future Enhancements 120 6.3.1 Direct volume rendering (DVR) 120
  21. 4 Conclusion 121 References 121

7 Generalized Artificial Finger Joint Design Process Employing Reverse

Engineering 123

  1. Gibson and X. P. Wang
  2. 1 Introduction 123
  3. 1.1 Structure of a human finger joint 123
  4. 1.2 Rheumatoid arthritis disease 123
  5. 1.3 Finger joint replacement design 124
  6. 1.4 Requirements for new finger joint design 125
  7. 1.5 Research objectives 126
  8. 2 Supporting Literature 127
  9. 2.1 Previous prosthetic designs 127
  10. 2.2 More recent designs 128
  11. 2.3 Development of a new design 128
  12. 2.4 Need for a generalized finger joint prosthesis 129
  13. 3 Technological Supports for the Prosthesis Design 130
  14. 3.1 Reverse engineering 130
  15. 3.2 Comparison of different imaging techniques 131
  16. 3.3 Engineering and medical aspects 131
  17. 3.4 NURBS design theory 131
  18. 4 Proposed Methodology 132
  19. 4.1 Finger joint model preparation 132
  20. 4.2 Finger joint digitization 133
  21. 4.3 Surface reconstruction inparaform 135
  22. 4.4 Curve feature extraction 135
  23. 4.5 Database construction and surface generalization 135
  24. 4.6 Review of the procedure 136
  25. 5 Finger Joint Surface Modelling and Feature Extraction 136
  26. 5.1 Data acquisition of the bone samples 136
  27. 5.2 Finger joint surface reconstruction 137
  28. 5.3 NURBS curve and feature extraction 138
  29. 5.3.1 NURBS curve extraction from the PP head 138
  30. 5.3.2 NURBS curve feature extraction from the PP and MP base 141
  31. 5.3.3 Discussion on curve feature extraction 142
  32. 5.4 Automatic surface reconstruction and feature extraction 143
  33. 5.4.1 Automated identification of the bearing surface 143
  34. 5.4.2 Automated feature extraction 143
  35. 6 Database Construction and Surface Generalization 145
  36. 6.1 Finger joint database construction 145
  37. 6.1.1 Statistical dimension analysis 145
  38. 6.1.2 PP head geometrical features 150
  39. 6.2 Generalized finger joint surface reconstruction 155
  40. 7 Conclusions 159 Acknowledgements 161 References 161

8 Scaffold-based Tissue Engineering - Design and Fabrication of Matrices

Using Solid Freeform Fabrication Techniques 163

Dietmar W. Hutmacher

  1. 1 Background 164
  2. 2 Introduction 167
  3. 3 Systems Based on Laser and UV Light Sources 167
  4. 3.1 Stereolithography apparatus (SLA) 167
  5. 3.2 Selective laser sintering (SLS) 170
  6. 3.3 Laminated object manufacturing (LOM) 171
  7. 3.4 Solid ground curing (SGC) 171
  8. 4 Systems Based on Printing Technology 172
  9. 4.1 Three-dimensional printing (3DP) 172
  10. 5 Systems Based on Extrusion/Direct Writing 176
  11. 6 Indirect SFF 180
  12. 7 Robotic and Mechatronically Controlled Systems 182
  13. 8 Conclusions 185 References 186

9 Direct Fabrication of Custom Orthopedic Implants Using Electron Beam

Melting Technology 191

Ola L. A. Harrysson and Denis R. Cormier

  1. 1 Introduction 191
  2. 2 Literature Review 192
  3. 2.1 Custom joint replacement implants 192
  4. 2.2 Custom bone plates and implants 196
  5. 3 Electron Beam Melting Technology 199
  6. 4 Direct Fabrication of Titanium Orthopedic Implants 201
  7. 4.1 EBM fabrication of custom knee implants 201
  8. 4.2 EBM fabrication of custom bone plates 202
  9. 4.3 Direct fabrication of bone ingrowth surfaces 203
  10. 5 Summary and Conclusions 204 References 205

10 Modelling, Analysis and Fabrication of Below-knee Prosthetic Sockets

Using Rapid Prototyping 207

  1. Y. H. Fuh, W. Feng and Y S. Wong
  2. 1 Introduction 208
  3. 1.1 Process of making the below-knee artificial prosthesis 208
  4. 1.1.1 Shaping of the positive mould 208
  5. 1.1.2 Fabrication of the prosthesis 209
  6. 1.2 Modelling, analysis and fabrication 210
  7. 2 Computer-Facilitated Approach 211
  8. 2.1 CAD modelling 211
  9. 2.2 Finite element analysis (FEA) 213
  10. 2.2.1 Geometries 213
  11. 2.2.2 Boundary conditions 213
  12. 2.2.3 Loading conditions 213
  13. 2.2.4 Analysis 214
  14. 3 Experiments 215
  15. 4 Results and Discussions 216
  16. 5 Rapid Socket Manufacturing Machine (RSMM) 219
  17. 5.1 RSMM design considerations 220
  18. 5.1.1 File format 220
  19. 5.1.2 Nozzle 220
  20. 5.1.3 System accuracy 221
  21. 5.2 Overview of the RSMM 221
  22. 5.3 Clinical test 223
  23. 5.4 Future work 224
  24. 6 Conclusions 225 Acknowledgements 225 References 225 Bibliography 226
11 Future Development of Medical Applications for Advanced

Manufacturing Technology

Was this article helpful?

0 0
Essentials of Human Physiology

Essentials of Human Physiology

This ebook provides an introductory explanation of the workings of the human body, with an effort to draw connections between the body systems and explain their interdependencies. A framework for the book is homeostasis and how the body maintains balance within each system. This is intended as a first introduction to physiology for a college-level course.

Get My Free Ebook


Post a comment